Advertisement

Journal of Neuroimmune Pharmacology

, Volume 12, Issue 1, pp 163–170 | Cite as

Caffeine Blocks HIV-1 Tat-Induced Amyloid Beta Production and Tau Phosphorylation

  • Mahmoud L. Soliman
  • Jonathan D. Geiger
  • Xuesong Chen
BRIEF REPORT

Abstract

The increased life expectancy of people living with HIV-1 who are taking effective anti-retroviral therapeutics is now accompanied by increased Alzheimer’s disease (AD)-like neurocognitive problems and neuropathological features such as increased levels of amyloid beta (Aβ) and phosphorylated tau proteins. Others and we have shown that HIV-1 Tat promotes the development of AD-like pathology. Indeed, HIV-1 Tat once endocytosed into neurons can alter morphological features and functions of endolysosomes as well as increase Aβ generation. Caffeine has been shown to have protective actions against AD and based on our recent findings that caffeine can inhibit endocytosis in neurons and can prevent neuronal Aβ generation, we tested the hypothesis that caffeine blocks HIV-1 Tat-induced Aβ generation and tau phosphorylation. In SH-SY5Y cells over-expressing wild-type amyloid beta precursor protein (AβPP), we demonstrated that HIV-1 Tat significantly increased secreted levels and intracellular levels of Aβ as well as cellular protein levels of phosphorylated tau. Caffeine significantly decreased levels of secreted and cellular levels of Aβ, and significantly blocked HIV-1 Tat-induced increases in secreted and cellular levels of Aβ. Caffeine also blocked HIV-1 Tat-induced increases in cellular levels of phosphorylated tau. Furthermore, caffeine blocked HIV-1 Tat-induced endolysosome dysfunction as indicated by decreased protein levels of vacuolar-ATPase and increased protein levels of cathepsin D. These results further implicate endolysosome dysfunction in the pathogenesis of AD and HAND, and by virtue of its ability to prevent and/or block neuropathological features associated with AD and HAND caffeine might find use as an effective adjunctive therapeutic agent.

Keywords

Caffeine HIV-1 Tat Amyloid beta Tau phosphorylation Endolysosomes BACE-1 

Notes

Acknowledgments

This work was supported by the following grants received from the National Institutes of Health; P30GM103329, R01MH100972 and R01MH105329.

Compliance with Ethical Standards

Disclosure Statement

The authors have no current or potential conflicts of interest to report.

References

  1. Achim CL, Adame A, Dumaop W, Everall IP, Masliah E (2009) Increased accumulation of intraneuronal amyloid beta in HIV-infected patients. J NeuroImmune Pharmacol 4:190–199CrossRefPubMedPubMedCentralGoogle Scholar
  2. Aksenov MY, Aksenova MV, Mactutus CF, Booze RM (2010) HIV-1 protein-mediated amyloidogenesis in rat hippocampal cell cultures. Neurosci Lett 475:174–178CrossRefPubMedPubMedCentralGoogle Scholar
  3. Anthony IC, Ramage SN, Carnie FW, Simmonds P, Bell JE (2006) Accelerated tau deposition in the brains of individuals infected with human immunodeficiency virus-1 before and after the advent of highly active anti-retroviral therapy. Acta Neuropathol 111:529–538CrossRefPubMedGoogle Scholar
  4. Appelqvist H, Waster P, Kagedal K, Ollinger K (2013) The lysosome: from waste bag to potential therapeutic target. J Mol Cell Biol 5:214–226CrossRefPubMedGoogle Scholar
  5. Arendash GW, Cao C (2010) Caffeine and coffee as therapeutics against Alzheimer's disease. J Alzheimers Dis 20(Suppl 1):S117–S126PubMedGoogle Scholar
  6. Arendash GW, Schleif W, Rezai-Zadeh K, Jackson EK, Zacharia LC, Cracchiolo JR, Shippy D, Tan J (2006) Caffeine protects Alzheimer's mice against cognitive impairment and reduces brain beta-amyloid production. Neuroscience 142:941–952CrossRefPubMedGoogle Scholar
  7. Arendash GW, Mori T, Cao C, Mamcarz M, Runfeldt M, Dickson A, Rezai-Zadeh K, Tane J, Citron BA, Lin X, Echeverria V, Potter H (2009) Caffeine reverses cognitive impairment and decreases brain amyloid-beta levels in aged Alzheimer's disease mice. J Alzheimers Dis 17:661–680PubMedGoogle Scholar
  8. Banks WA, Robinson SM, Nath A (2005) Permeability of the blood-brain barrier to HIV-1 tat. Exp Neurol 193:218–227CrossRefPubMedGoogle Scholar
  9. Bi X, Liao G (2007) Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-pick type C mice: lipid starvation or indigestion? Autophagy 3:646–648CrossRefPubMedGoogle Scholar
  10. Blanchard J (1982) Protein binding of caffeine in young and elderly males. J Pharm Sci 71:1415–1418CrossRefPubMedGoogle Scholar
  11. Boland B, Kumar A, Lee S, Platt FM, Wegiel J, WH Y, Nixon RA (2008) Autophagy induction and autophagosome clearance in neurons: relationship to autophagic pathology in Alzheimer's disease. J Neurosci 28:6926–6937CrossRefPubMedPubMedCentralGoogle Scholar
  12. Bonaldo P, Sandri M (2013) Cellular and molecular mechanisms of muscle atrophy. Dis Model Mech 6:25–39CrossRefPubMedPubMedCentralGoogle Scholar
  13. Brew BJ, Pemberton L, Blennow K, Wallin A, Hagberg L (2005) CSF amyloid beta42 and tau levels correlate with AIDS dementia complex. Neurology 65:1490–1492CrossRefPubMedGoogle Scholar
  14. Buscemi L, Ramonet D, Geiger JD (2007) Human immunodeficiency virus type-1 protein tat induces tumor necrosis factor-alpha-mediated neurotoxicity. Neurobiol Dis 26:661–670CrossRefPubMedPubMedCentralGoogle Scholar
  15. Cao C, Cirrito JR, Lin X, Wang L, Verges DK, Dickson A, Mamcarz M, Zhang C, Mori T, Arendash GW, Holtzman DM, Potter H (2009) Caffeine suppresses amyloid-beta levels in plasma and brain of Alzheimer's disease transgenic mice. J Alzheimers Dis 17:681–697PubMedPubMedCentralGoogle Scholar
  16. Cao C, Loewenstein DA, Lin X, Zhang C, Wang L, Duara R, Wu Y, Giannini A, Bai G, Cai J, Greig M, Schofield E, Ashok R, Small B, Potter H, Arendash GW (2012) High blood caffeine levels in MCI linked to lack of progression to dementia. J Alzheimers Dis 30:559–572PubMedGoogle Scholar
  17. Carman AJ, Dacks PA, Lane RF, Shineman DW, Fillit HM (2014) Current evidence for the use of coffee and caffeine to prevent age-related cognitive decline and Alzheimer's disease. J Nutr Health Aging 18:383–392CrossRefPubMedGoogle Scholar
  18. Cataldo AM, Peterhoff CM, Troncoso JC, Gomez-Isla T, Hyman BT, Nixon RA (2000) Endocytic pathway abnormalities precede amyloid beta deposition in sporadic Alzheimer's disease and down syndrome: differential effects of APOE genotype and presenilin mutations. Am J Pathol 157:277–286CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chen X, Hui L, Geiger NH, Haughey NJ, Geiger JD (2013) Endolysosome involvement in HIV-1 transactivator protein-induced neuronal amyloid beta production. Neurobiol Aging 34:2370–2378CrossRefPubMedPubMedCentralGoogle Scholar
  20. Chesser AS, Pritchard SM, Johnson GV (2013) Tau clearance mechanisms and their possible role in the pathogenesis of Alzheimer disease. Front Neurol 4:122CrossRefPubMedPubMedCentralGoogle Scholar
  21. Clifford DB, Fagan AM, Holtzman DM, Morris JC, Teshome M, Shah AR, Kauwe JS (2009) CSF biomarkers of Alzheimer disease in HIV-associated neurologic disease. Neurology 73:1982–1987CrossRefPubMedPubMedCentralGoogle Scholar
  22. Cysique LA, Hewitt T, Croitoru-Lamoury J, Taddei K, Martins RN, Chew CS, Davies NN, Price P, BJ B (2015) APOE epsilon4 moderates abnormal CSF-abeta-42 levels, while neurocognitive impairment is associated with abnormal CSF tau levels in HIV+ individuals - a cross-sectional observational study. BMC Neurol 15:51CrossRefPubMedPubMedCentralGoogle Scholar
  23. Daniel R, Marusich E, Argyris E, Zhao RY, Skalka AM, Pomerantz RJ (2005) Caffeine inhibits human immunodeficiency virus type 1 transduction of nondividing cells. J Virol 79:2058–2065CrossRefPubMedPubMedCentralGoogle Scholar
  24. Deshmane SL, Mukerjee R, Fan S, Sawaya BE (2011) High-performance capillary electrophoresis for determining HIV-1 tat protein in neurons. PLoS One 6:e16148CrossRefPubMedPubMedCentralGoogle Scholar
  25. Ellis RJ, Gamst AC, Capparelli E, Spector SA, Hsia K, Wolfson T, Abramson I, Grant I, McCutchan JA (2000) Cerebrospinal fluid HIV RNA originates from both local CNS and systemic sources. Neurology 54:927–936CrossRefPubMedGoogle Scholar
  26. Ellis RJ, Rosario D, Clifford DB, McArthur JC, Simpson D, Alexander T, Gelman BB, Vaida F, Collier A, Marra CM, Ances B, Atkinson JH, Dworkin RH, Morgello S, Grant I (2010) Continued high prevalence and adverse clinical impact of human immunodeficiency virus-associated sensory neuropathy in the era of combination antiretroviral therapy: the CHARTER study. Arch Neurol 67:552–558CrossRefPubMedPubMedCentralGoogle Scholar
  27. Esiri MM, Biddolph SC, Morris CS (1998) Prevalence of Alzheimer plaques in AIDS. J Neurol Neurosurg Psychiatry 65:29–33CrossRefPubMedPubMedCentralGoogle Scholar
  28. Eskelinen MH, Kivipelto M (2010) Caffeine as a protective factor in dementia and Alzheimer's disease. J Alzheimers Dis 20(Suppl 1):S167–S174PubMedGoogle Scholar
  29. Eskelinen MH, Ngandu T, Tuomilehto J, Soininen H, Kivipelto M (2009) Midlife coffee and tea drinking and the risk of late-life dementia: a population-based CAIDE study. J Alzheimers Dis 16:85–91PubMedGoogle Scholar
  30. Espinosa J, Rocha A, Nunes F, Costa MS, Schein V, Kazlauckas V, Kalinine E, Souza DO, Cunha RA, Porciuncula LO (2013) Caffeine consumption prevents memory impairment, neuronal damage, and adenosine A2 A receptors upregulation in the hippocampus of a rat model of sporadic dementia. J Alzheimers Dis 34:509–518PubMedGoogle Scholar
  31. Fields JA, Dumaop W, Crews L, Adame A, Spencer B, Metcalf J, He J, Rockenstein E, Masliah E (2015) Mechanisms of HIV-1 tat neurotoxicity via CDK5 translocation and hyper-activation: role in HIV-associated neurocognitive disorders. Curr HIV Res 13:43–54CrossRefPubMedPubMedCentralGoogle Scholar
  32. Flaten V, Laurent C, Coelho JE, Sandau U, Batalha VL, Burnouf S, Hamdane M, Humez S, Boison D, Lopes LV, Buee L, Blum D (2014) From epidemiology to pathophysiology: what about caffeine in Alzheimer's disease? Biochem Soc Trans 42:587–592CrossRefPubMedPubMedCentralGoogle Scholar
  33. Fredholm BB, Battig K, Holmen J, Nehlig A, Zvartau EE (1999) Actions of caffeine in the brain with special reference to factors that contribute to its widespread use. Pharmacol Rev 51:83–133PubMedGoogle Scholar
  34. Gelber RP, Petrovitch H, Masaki KH, Ross GW, White LR (2011) Coffee intake in midlife and risk of dementia and its neuropathologic correlates. J Alzheimers Dis 23:607–615PubMedPubMedCentralGoogle Scholar
  35. Gelman BB, Schuenke K (2004) Brain aging in acquired immunodeficiency syndrome: increased ubiquitin-protein conjugate is correlated with decreased synaptic protein but not amyloid plaque accumulation. J Neurovirol 10:98–108CrossRefPubMedGoogle Scholar
  36. Gelman BB, Soukup VM, Holzer CE 3rd, Fabian RH, Schuenke KW, Keherly MJ, Richey FJ, Lahart CJ (2005) Associated dementia. J Acquir Immune Defic Syndr 39:422–425CrossRefPubMedGoogle Scholar
  37. Giunta B, Hou H, Zhu Y, Rrapo E, Tian J, Takashi M, Commins D, Singer E, He J, Fernandez F, Tan J (2009) HIV-1 tat contributes to Alzheimer's disease-like pathology in PSAPP mice. Int J Clin Exp Pathol 2:433–443PubMedPubMedCentralGoogle Scholar
  38. Grbovic OM, Mathews PM, Jiang Y, Schmidt SD, Dinakar R, Summers-Terio NB, Ceresa BP, Nixon RA, Cataldo AM (2003) Rab5-stimulated up-regulation of the endocytic pathway increases intracellular beta-cleaved amyloid precursor protein carboxyl-terminal fragment levels and abeta production. J Biol Chem 278:31261–31268CrossRefPubMedGoogle Scholar
  39. Green DA, Masliah E, Vinters HV, Beizai P, Moore DJ, Achim CL (2005) Brain deposition of beta-amyloid is a common pathologic feature in HIV positive patients. AIDS 19:407–411CrossRefPubMedGoogle Scholar
  40. Hamano T, Gendron TF, Causevic E, Yen SH, Lin WL, Isidoro C, Deture M, Ko LW (2008) Autophagic-lysosomal perturbation enhances tau aggregation in transfectants with induced wild-type tau expression. Eur J Neurosci 27:1119–1130CrossRefPubMedGoogle Scholar
  41. Han K, Jia N, Li J, Yang L, Min LQ (2013) Chronic caffeine treatment reverses memory impairment and the expression of brain BNDF and TrkB in the PS1/APP double transgenic mouse model of Alzheimer's disease. Mol Med Rep 8:737–740PubMedPubMedCentralGoogle Scholar
  42. Heaton RK et al. (2010) HIV-associated neurocognitive disorders persist in the era of potent antiretroviral therapy: CHARTER study. Neurology 75:2087–2096CrossRefPubMedPubMedCentralGoogle Scholar
  43. Hui L, Chen X, Haughey NJ, Geiger JD (2012) Role of endolysosomes in HIV-1 tat-induced neurotoxicity. ASN Neuro 4:243–252CrossRefPubMedGoogle Scholar
  44. Jiang S, Li Y, Zhang X, Bu G, Xu H, Zhang YW (2014) Trafficking regulation of proteins in Alzheimer's disease. Mol Neurodegener 9:6CrossRefPubMedPubMedCentralGoogle Scholar
  45. Jo C, Gundemir S, Pritchard S, Jin YN, Rahman I, Johnson GV (2014) Nrf2 reduces levels of phosphorylated tau protein by inducing autophagy adaptor protein NDP52. Nat Commun 5:3496PubMedPubMedCentralGoogle Scholar
  46. Johnson TP, Patel K, Johnson KR, Maric D, Calabresi PA, Hasbun R, Nath A (2013) Induction of IL-17 and nonclassical T-cell activation by HIV-tat protein. Proc Natl Acad Sci U S A 110:13588–13593CrossRefPubMedPubMedCentralGoogle Scholar
  47. Kenessey A, Nacharaju P, Ko LW, Yen SH (1997) Degradation of tau by lysosomal enzyme cathepsin D: implication for Alzheimer neurofibrillary degeneration. J Neurochem 69:2026–2038CrossRefPubMedGoogle Scholar
  48. Kim TA, Avraham HK, Koh YH, Jiang S, Park IW, Avraham S (2003) HIV-1 tat-mediated apoptosis in human brain microvascular endothelial cells. J Immunol 170:2629–2637CrossRefPubMedGoogle Scholar
  49. Kim J, Yoon JH, Kim YS (2013) HIV-1 tat interacts with and regulates the localization and processing of amyloid precursor protein. PLoS One 8:e77972CrossRefPubMedPubMedCentralGoogle Scholar
  50. King JE, Eugenin EA, Buckner CM, Berman JW (2006) HIV tat and neurotoxicity. Microbes Infect 8:1347–1357CrossRefPubMedGoogle Scholar
  51. Klug W, Dietl A, Simon B, Sinning I, Wild K (2011) Phosphorylation of LRP1 regulates the interaction with Fe65. FEBS Lett 585:3229–3235CrossRefPubMedGoogle Scholar
  52. Laurent C, Eddarkaoui S, Derisbourg M, Leboucher A, Demeyer D, Carrier S, Schneider M, Hamdane M, Muller CE, Buee L, Blum D (2014) Beneficial effects of caffeine in a transgenic model of Alzheimer's disease-like tau pathology. Neurobiol Aging 35:2079–2090CrossRefPubMedGoogle Scholar
  53. Li S, Geiger NH, Soliman ML, Hui L, Geiger JD, Chen X (2015) Caffeine, through adenosine A3 receptor-mediated actions, suppresses amyloid-beta protein precursor internalization and amyloid-beta generation. J Alzheimers Dis 47:73–83CrossRefPubMedPubMedCentralGoogle Scholar
  54. Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE, Moir RD, Nath A, He JJ (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387CrossRefPubMedGoogle Scholar
  55. Ma M, Nath A (1997) Molecular determinants for cellular uptake of tat protein of human immunodeficiency virus type 1 in brain cells. J Virol 71:2495–2499PubMedPubMedCentralGoogle Scholar
  56. Ma QL, Galasko DR, Ringman JM, Vinters HV, Edland SD, Pomakian J, Ubeda OJ, Rosario ER, Teter B, Frautschy SA, Cole GM (2009) Reduction of SorLA/LR11, a sorting protein limiting beta-amyloid production, in Alzheimer disease cerebrospinal fluid. Arch Neurol 66:448–457CrossRefPubMedPubMedCentralGoogle Scholar
  57. Mangieri LR, Mader BJ, Thomas CE, Taylor CA, Luker AM, Tse TE, Huisingh C, Shacka JJ (2014) ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS One 9:e93257CrossRefPubMedPubMedCentralGoogle Scholar
  58. Merino JJ, Montes ML, Blanco A, Bustos MJ, Oreja-Guevara C, Bayon C, Cuadrado A, Lubrini G, Cambron I, Munoz A, Cebolla S, Gutierrez-Fernandez M, Bernardino JI, Arribas JR, Fiala M (2011) HIV-1 neuropathogenesis: therapeutic strategies against neuronal loss induced by gp120/tat glycoprotein in the central nervous system. Rev Neurol 52:101–111PubMedGoogle Scholar
  59. Miners JS, Barua N, Kehoe PG, Gill S, Love S (2011) Abeta-degrading enzymes: potential for treatment of Alzheimer disease. J Neuropathol Exp Neurol 70:944–959CrossRefPubMedGoogle Scholar
  60. Morel E, Chamoun Z, Lasiecka ZM, Chan RB, Williamson RL, Vetanovetz C, Dall'Armi C, Simoes S, Point Du Jour KS, McCabe BD, Small SA, Di Paolo G (2013) Phosphatidylinositol-3-phosphate regulates sorting and processing of amyloid precursor protein through the endosomal system. Nat Commun 4:2250CrossRefPubMedPubMedCentralGoogle Scholar
  61. Nath A (2002) Human immunodeficiency virus (HIV) proteins in neuropathogenesis of HIV dementia. J Infect Dis 186(Suppl 2):S193–S198CrossRefPubMedGoogle Scholar
  62. Nath A, Psooy K, Martin C, Knudsen B, Magnuson DS, Haughey N, Geiger JD (1996) Identification of a human immunodeficiency virus type 1 tat epitope that is neuroexcitatory and neurotoxic. J Virol 70:1475–1480PubMedPubMedCentralGoogle Scholar
  63. Nebuloni M, Pellegrinelli A, Ferri A, Bonetto S, Boldorini R, Vago L, Grassi MP, Costanzi G (2001) Beta amyloid precursor protein and patterns of HIV p 24 immunohistochemistry in different brain areas of AIDS patients. AIDS 15:571–575CrossRefPubMedGoogle Scholar
  64. Nixon RA (2005) Endosome function and dysfunction in Alzheimer's disease and other neurodegenerative diseases. Neurobiol Aging 26:373–382CrossRefPubMedGoogle Scholar
  65. Nixon RA, Cataldo AM (1995) The endosomal-lysosomal system of neurons: new roles. Trends Neurosci 18:489–496CrossRefPubMedGoogle Scholar
  66. Nunnari G, Argyris E, Fang J, Mehlman KE, Pomerantz RJ, Daniel R (2005) Inhibition of HIV-1 replication by caffeine and caffeine-related methylxanthines. Virology 335:177–184CrossRefPubMedGoogle Scholar
  67. Nuovo GJ, Becker J, Burk MW, Margiotta M, Fuhrer J, Steigbigel RT (1994) In situ detection of PCR-amplified HIV-1 nucleic acids in lymph nodes and peripheral blood in patients with asymptomatic HIV-1 infection and advanced-stage AIDS. J Acquir Immune Defic Syndr 7:916–923PubMedGoogle Scholar
  68. Oyama F, Murakami N, Ihara Y (1998) Chloroquine myopathy suggests that tau is degraded in lysosomes: implication for the formation of paired helical filaments in Alzheimer's disease. Neurosci Res 31:1–8CrossRefPubMedGoogle Scholar
  69. Patrick C, Crews L, Desplats P, Dumaop W, Rockenstein E, Achim CL, Everall IP, Masliah E (2011) Increased CDK5 expression in HIV encephalitis contributes to neurodegeneration via tau phosphorylation and is reversed with Roscovitine. Am J Pathol 178:1646–1661CrossRefPubMedPubMedCentralGoogle Scholar
  70. Polito VA, Li H, Martini-Stoica H, Wang B, Yang L, Xu Y, Swartzlander DB, Palmieri M, di Ronza A, Lee VM, Sardiello M, Ballabio A, Zheng H (2014) Selective clearance of aberrant tau proteins and rescue of neurotoxicity by transcription factor EB. EMBO Mol Med 6:1142–1160CrossRefPubMedPubMedCentralGoogle Scholar
  71. Pulliam L (2009) HIV regulation of amyloid beta production. J NeuroImmune Pharmacol 4:213–217CrossRefPubMedGoogle Scholar
  72. Rajendran L, Annaert W (2012) Membrane trafficking pathways in Alzheimer's disease. Traffic 13:759–770CrossRefPubMedGoogle Scholar
  73. Rajendran L, Schneider A, Schlechtingen G, Weidlich S, Ries J, Braxmeier T, Schwille P, Schulz JB, Schroeder C, Simons M, Jennings G, Knolker HJ, Simons K (2008) Efficient inhibition of the Alzheimer's disease beta-secretase by membrane targeting. Science 320:520–523CrossRefPubMedGoogle Scholar
  74. Rempel HC, Pulliam L (2005) HIV-1 tat inhibits neprilysin and elevates amyloid beta. AIDS 19:127–135CrossRefPubMedGoogle Scholar
  75. Ritchie K, Carriere I, de Mendonca A, Portet F, Dartigues JF, Rouaud O, Barberger-Gateau P, Ancelin ML (2007) The neuroprotective effects of caffeine: a prospective population study (the three City study. Neurology 69:536–545CrossRefPubMedGoogle Scholar
  76. Sannerud R, Declerck I, Peric A, Raemaekers T, Menendez G, Zhou L, Veerle B, Coen K, Munck S, De Strooper B, Schiavo G, Annaert W (2011) ADP ribosylation factor 6 (ARF6) controls amyloid precursor protein (APP) processing by mediating the endosomal sorting of BACE1. Proc Natl Acad Sci U S A 108:E559–E568CrossRefPubMedPubMedCentralGoogle Scholar
  77. Santos C, Costa J, Santos J, Vaz-Carneiro A, Lunet N (2010a) Caffeine intake and dementia: systematic review and meta-analysis. J Alzheimers Dis 20(Suppl 1):S187–S204PubMedGoogle Scholar
  78. Santos C, Lunet N, Azevedo A, de Mendonca A, Ritchie K, Barros H (2010b) Caffeine intake is associated with a lower risk of cognitive decline: a cohort study from Portugal. J Alzheimers Dis 20(Suppl 1):S175–S185PubMedGoogle Scholar
  79. Shimizu H, Tosaki A, Kaneko K, Hisano T, Sakurai T, Nukina N (2008) Crystal structure of an active form of BACE1, an enzyme responsible for amyloid beta protein production. Mol Cell Biol 28:3663–3671CrossRefPubMedPubMedCentralGoogle Scholar
  80. Spector SA, Zhou D (2008) Autophagy: an overlooked mechanism of HIV-1 pathogenesis and neuroAIDS? Autophagy 4:704–706CrossRefPubMedPubMedCentralGoogle Scholar
  81. Tate BA, Mathews PM (2006) Targeting the role of the endosome in the pathophysiology of Alzheimer's disease: a strategy for treatment. Sci Aging Knowl Environ 2006:re2CrossRefGoogle Scholar
  82. Torres M, Jimenez S, Sanchez-Varo R, Navarro V, Trujillo-Estrada L, Sanchez-Mejias E, Carmona I, Davila JC, Vizuete M, Gutierrez A, Vitorica J (2012) Defective lysosomal proteolysis and axonal transport are early pathogenic events that worsen with age leading to increased APP metabolism and synaptic abeta in transgenic APP/PS1 hippocampus. Mol Neurodegener 7:59CrossRefPubMedPubMedCentralGoogle Scholar
  83. van de Bovenkamp M, Nottet HS, Pereira CF (2002) Interactions of human immunodeficiency virus-1 proteins with neurons: possible role in the development of human immunodeficiency virus-1-associated dementia. Eur J Clin Investig 32:619–627CrossRefGoogle Scholar
  84. Vendeville A, Rayne F, Bonhoure A, Bettache N, Montcourrier P, Beaumelle B (2004) HIV-1 tat enters T cells using coated pits before translocating from acidified endosomes and eliciting biological responses. Mol Biol Cell 15:2347–2360CrossRefPubMedPubMedCentralGoogle Scholar
  85. Waldron E, Jaeger S, Pietrzik CU (2006) Functional role of the low-density lipoprotein receptor-related protein in Alzheimer's disease. Neurodegener Dis 3:233–238CrossRefPubMedGoogle Scholar
  86. Waldron E, Heilig C, Schweitzer A, Nadella N, Jaeger S, Martin AM, Weggen S, Brix K, Pietrzik CU (2008) LRP1 modulates APP trafficking along early compartments of the secretory pathway. Neurobiol Dis 31:188–197CrossRefPubMedGoogle Scholar
  87. Wang Y, Martinez-Vicente M, Kruger U, Kaushik S, Wong E, Mandelkow EM, Cuervo AM, Mandelkow E (2009) Tau fragmentation, aggregation and clearance: the dual role of lysosomal processing. Hum Mol Genet 18:4153–4170CrossRefPubMedPubMedCentralGoogle Scholar
  88. Westendorp MO, Frank R, Ochsenbauer C, Stricker K, Dhein J, Walczak H, Debatin KM, Krammer PH (1995) Sensitization of T cells to CD95-mediated apoptosis by HIV-1 tat and gp120. Nature 375:497–500CrossRefPubMedGoogle Scholar
  89. Wostyn P, Van Dam D, Audenaert K, De Deyn PP (2011) Increased cerebrospinal fluid production as a possible mechanism underlying Caffeine's protective effect against Alzheimer's disease. Int J Alzheimers Dis 2011:617420PubMedPubMedCentralGoogle Scholar
  90. Xu J, Ikezu T (2009) The comorbidity of HIV-associated neurocognitive disorders and Alzheimer's disease: a foreseeable medical challenge in post-HAART era. J NeuroImmune Pharmacol 4:200–212CrossRefPubMedGoogle Scholar
  91. Zhou D, Spector SA (2008) Human immunodeficiency virus type-1 infection inhibits autophagy. AIDS 22:695–699CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Mahmoud L. Soliman
    • 1
  • Jonathan D. Geiger
    • 1
  • Xuesong Chen
    • 1
  1. 1.Department of Biomedical Sciences, School of Medicine and Health SciencesUniversity of North DakotaGrand ForksUSA

Personalised recommendations