Skip to main content

Advertisement

Log in

Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The importance of CD11c+ antigen-presenting cells (APCs) in the pathogenesis of experimental autoimmune encephalomyelitis (EAE) is well accepted and the gate keeper function of perivascular CD11c+ APCs has been demonstrated. CD11c can be expressed by APCs from external sources or by central nervous system (CNS) resident APCs such as microglia. Yet, changes in the gene expression pattern of CNS CD11c+ APCs during disease are still unclear and differentially expressed genes might play a decisive role in EAE progression. Due to their low numbers in the diseased brain and due to the absence of considerable numbers in the healthy CNS, analysis of CNS CD11c+ cells is technically difficult. To ask whether the CD11c+ APC population contributes to remission of EAE disease, we used Illumina deep mRNA sequencing (RNA-Seq) and quantitative real time polymerase chain reaction (qRT-PCR) analyses to identify the transcriptome of CD11c+ APCs during disease course. We identified a battery of genes that were significantly regulated during the exacerbation of the disease compared to remission and relapse. Three of these genes, Arginase-1, Chi3l3 and Ms4a8a, showed a higher expression at the exacerbation than at later time points during the disease, both in SJL/J and in C57BL/6 mice, and could be attributed to alternatively activated APCs. Expression of Arginase-1, Chi3l3 and Ms4a8a genes was linked to the disease phase of EAE rather than to disease score. Expression of these genes suggested that APCs resembling alternatively activated macrophages are involved during the first wave of neuroinflammation and can be directly associated with the disease progress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Ahn M, Lee C, Jung K, Kim H, Moon C, Sim KB, Shin T (2012) Immunohistochemical study of arginase-1 in the spinal cords of rats with clip compression injury. Brain Res 1445:11–19

    Article  CAS  PubMed  Google Scholar 

  • Aktas O, Waiczies S, Smorodchenko A, Dorr J, Seeger B, Prozorovski T, Sallach S, Endres M, Brocke S, Nitsch R, Zipp F (2003) Treatment of relapsing paralysis in experimental encephalomyelitis by targeting Th1 cells through atorvastatin. J Exp Med 197:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anders S, Huber W (2010) Differential expression analysis for sequence count data. Genome Biol 11:R106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Archambault AS, Sim J, Gimenez MA, Russell JH (2005) Defining antigen-dependent stages of T cell migration from the blood to the central nervous system parenchyma. Eur J Immunol 35:1076–1085

    Article  CAS  PubMed  Google Scholar 

  • Arora M, Chen L, Paglia M, Gallagher I, Allen JE, Vyas YM, Ray A, Ray P (2006) Simvastatin promotes Th2-type responses through the induction of the chitinase family member Ym1 in dendritic cells. Proc Natl Acad Sci U S A 103:7777–7782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bailey SL, Schreiner B, McMahon EJ, Miller SD (2007) CNS myeloid DCs presenting endogenous myelin peptides ‘preferentially’ polarize CD4+ T(H)-17 cells in relapsing EAE. Nat Immunol 8:172–180

    Article  CAS  PubMed  Google Scholar 

  • Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate - a practical and powerful approach to multiple testing. J Roy Stat Soc B Met 57:289–300

    Google Scholar 

  • Franco R, Fernandez-Suarez D (2015) Alternatively activated microglia and macrophages in the central nervous system. Prog Neurobiol 131:65–86

    Article  CAS  PubMed  Google Scholar 

  • Ghoreschi K, Bruck J, Kellerer C, Deng C, Peng H, Rothfuss O, Hussain RZ, Gocke AR, Respa A, Glocova I, Valtcheva N, Alexander E, Feil S, Feil R, Schulze-Osthoff K, Rupec RA, Lovett-Racke AE, Dringen R, Racke MK, Rocken M (2011) Fumarates improve psoriasis and multiple sclerosis by inducing type II dendritic cells. J Exp Med 208:2291–2303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goverman J (2009) Autoimmune T cell responses in the central nervous system. Nat Rev Immunol 9:393–407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Greter M, Heppner FL, Lemos MP, Odermatt BM, Goebels N, Laufer T, Noelle RJ, Becher B (2005) Dendritic cells permit immune invasion of the CNS in an animal model of multiple sclerosis. Nat Med 11:328–334

    Article  CAS  PubMed  Google Scholar 

  • Hemmi H, Idoyaga J, Suda K, Suda N, Kennedy K, Noda M, Aderem A, Steinman RM (2009) A new triggering receptor expressed on myeloid cells (Trem) family member, Trem-like 4, binds to dead cells and is a DNAX activation protein 12-linked marker for subsets of mouse macrophages and dendritic cells. J Immunol 182:1278–1286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Li P, Guo Y, Wang H, Leak RK, Chen S, Gao Y, Chen J (2012) Microglia/macrophage polarization dynamics reveal novel mechanism of injury expansion after focal cerebral ischemia. Stroke;J Cerebral Circulation 43:3063–3070

    Article  CAS  Google Scholar 

  • Huber W et al. (2015) Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods 12:115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Z, Jiang JX, Zhang GX (2014) Macrophages: a double-edged sword in experimental autoimmune encephalomyelitis. Immunol Lett 160:17–22

    Article  CAS  PubMed  Google Scholar 

  • Jolivel V, Luessi F, Masri J, Kraus SH, Hubo M, Poisa-Beiro L, Klebow S, Paterka M, Yogev N, Tumani H, Furlan R, Siffrin V, Jonuleit H, Zipp F, Waisman A (2013) Modulation of dendritic cell properties by laquinimod as a mechanism for modulating multiple sclerosis. Brain J Neurol 136:1048–1066

    Article  Google Scholar 

  • Jung S, Siglienti I, Grauer O, Magnus T, Scarlato G, Toyka K (2004) Induction of IL-10 in rat peritoneal macrophages and dendritic cells by glatiramer acetate. J Neuroimmunol 148:63–73

    Article  CAS  PubMed  Google Scholar 

  • Karman J, Chu HH, Co DO, Seroogy CM, Sandor M, Fabry Z (2006) Dendritic cells amplify T cell-mediated immune responses in the central nervous system. J Immunol 177:7750–7760

    Article  CAS  PubMed  Google Scholar 

  • Kigerl KA, Gensel JC, Ankeny DP, Alexander JK, Donnelly DJ, Popovich PG (2009) Identification of two distinct macrophage subsets with divergent effects causing either neurotoxicity or regeneration in the injured mouse spinal cord. J Neurosci : The official Journal of the Society for Neuroscience 29:13435–13444

    Article  CAS  Google Scholar 

  • Krishnamoorthy G, Wekerle H (2009) EAE: an immunologist’s magic eye. Eur J Immunol 39:2031–2035

    Article  CAS  PubMed  Google Scholar 

  • Kumamoto Y, Linehan M, Weinstein JS, Laidlaw BJ, Craft JE, Iwasaki A (2013) CD301b(+) dermal dendritic cells drive T helper 2 cell-mediated immunity. Immunity 39:733–743

    Article  CAS  PubMed  Google Scholar 

  • Legge KL, Gregg RK, Maldonado-Lopez R, Li L, Caprio JC, Moser M, Zaghouani H (2002) On the role of dendritic cells in peripheral T cell tolerance and modulation of autoimmunity. J Exp Med 196:217–227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Zhang GX, Chen Y, Xu H, Fitzgerald DC, Zhao Z, Rostami A (2008) CD11c + CD11b + dendritic cells play an important role in intravenous tolerance and the suppression of experimental autoimmune encephalomyelitis. J Immunol 181:2483–2493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu C, Li Y, Yu J, Feng L, Hou S, Liu Y, Guo M, Xie Y, Meng J, Zhang H, Xiao B, Ma C (2013) Targeting the shift from M1 to M2 macrophages in experimental autoimmune encephalomyelitis mice treated with fasudil. PLoS One 8:e54841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luessi F, Kuhlmann T, Zipp F (2014) Remyelinating strategies in multiple sclerosis. Expert Rev Neurother 14:1315–1334

    Article  CAS  PubMed  Google Scholar 

  • Luessi F, Kraus S, Trinschek B, Lerch S, Ploen R, Paterka M, Roberg T, Poisa-Beiro L, Klotz L, Wiendl H, Bopp T, Jonuleit H, Jolivel V, Zipp F, Witsch E (2015) FTY720 (fingolimod) treatment tips the balance towards less immunogenic antigen-presenting cells in patients with multiple sclerosis. Multiple sclerosis.

  • McCarthy DJ, Chen Y, Smyth GK (2012) Differential expression analysis of multifactor RNA-seq experiments with respect to biological variation. Nucleic Acids Res 40:4288–4297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMahon EJ, Bailey SL, Castenada CV, Waldner H, Miller SD (2005) Epitope spreading initiates in the CNS in two mouse models of multiple sclerosis. Nat Med 11:335–339

    Article  CAS  PubMed  Google Scholar 

  • McRae BL, Kennedy MK, Tan LJ, Dal Canto MC, Picha KS, Miller SD (1992) Induction of active and adoptive relapsing experimental autoimmune encephalomyelitis (EAE) using an encephalitogenic epitope of proteolipid protein. J Neuroimmunol 38:229–240

    Article  CAS  PubMed  Google Scholar 

  • Mendel I, Derosbo NK, Bennun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2(B) mice - fine specificity and T-cell receptor V-Beta expression of encephalitogenic T-cells. Eur J Immunol 25:1951–1959

    Article  CAS  PubMed  Google Scholar 

  • Menges M, Rossner S, Voigtlander C, Schindler H, Kukutsch NA, Bogdan C, Erb K, Schuler G, Lutz MB (2002) Repetitive injections of dendritic cells matured with tumor necrosis factor alpha induce antigen-specific protection of mice from autoimmunity. J Exp Med 195:15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mikita J, Dubourdieu-Cassagno N, Deloire MS, Vekris A, Biran M, Raffard G, Brochet B, Canron MH, Franconi JM, Boiziau C, Petry KG (2011) Altered M1/M2 activation patterns of monocytes in severe relapsing experimental rat model of multiple sclerosis. Amelioration of clinical status by M2 activated monocyte administration. Mult Scler 17:2–15

    Article  CAS  PubMed  Google Scholar 

  • Munder M, Eichmann K, Modolell M (1998) Alternative metabolic states in murine macrophages reflected by the nitric oxide synthase/arginase balance: competitive regulation by CD4+ T cells correlates with Th1/Th2 phenotype. J Immunol 160:5347–5354

    CAS  PubMed  Google Scholar 

  • Paterka M, Siffrin V, Voss JO, Werr J, Hoppmann N, Gollan R, Belikan P, Bruttger J, Birkenstock J, Jung S, Esplugues E, Yogev N, Flavell RA, Bopp T, Zipp F (2016) Gatekeeper role of brain antigen-presenting CD11c + cells in neuroinflammation. EMBO J 35:89–101

    Article  CAS  PubMed  Google Scholar 

  • Picelli S, Faridani OR, Bjorklund AK, Winberg G, Sagasser S, Sandberg R (2014) Full-length RNA-seq from single cells using smart-seq2. Nat Protoc 9:171–181

    Article  CAS  PubMed  Google Scholar 

  • Ponomarev ED, Maresz K, Tan Y, Dittel BN (2007) CNS-derived interleukin-4 is essential for the regulation of autoimmune inflammation and induces a state of alternative activation in microglial cells. The Journal of neuroscience : the official journal of the Society for Neuroscience 27:10714–10721

    Article  CAS  Google Scholar 

  • Prinz M, Schmidt H, Mildner A, Knobeloch KP, Hanisch UK, Raasch J, Merkler D, Detje C, Gutcher I, Mages J, Lang R, Martin R, Gold R, Becher B, Bruck W, Kalinke U (2008) Distinct and nonredundant in vivo functions of IFNAR on myeloid cells limit autoimmunity in the central nervous system. Immunity 28:675–686

    Article  CAS  PubMed  Google Scholar 

  • Raes G, De Baetselier P, Noel W, Beschin A, Brombacher F, Hassanzadeh Gh G (2002) Differential expression of FIZZ1 and Ym1 in alternatively versus classically activated macrophages. J Leukoc Biol 71:597–602

    CAS  PubMed  Google Scholar 

  • Rauh MJ, Ho V, Pereira C, Sham A, Sly LM, Lam V, Huxham L, Minchinton AI, Mui A, Krystal G (2005) SHIP represses the generation of alternatively activated macrophages. Immunity 23:361–374

    Article  CAS  PubMed  Google Scholar 

  • Robinson MD, McCarthy DJ, Smyth GK (2010) edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26:139–140

    Article  CAS  PubMed  Google Scholar 

  • Schilling M, Besselmann M, Leonhard C, Mueller M, Ringelstein EB, Kiefer R (2003) Microglial activation precedes and predominates over macrophage infiltration in transient focal cerebral ischemia: a study in green fluorescent protein transgenic bone marrow chimeric mice. Exp Neurol 183:25–33

    Article  PubMed  Google Scholar 

  • Schmieder A, Schledzewski K, Michel J, Tuckermann JP, Tome L, Sticht C, Gkaniatsou C, Nicolay JP, Demory A, Faulhaber J, Kzhyshkowska J, Geraud C, Goerdt S (2011) Synergistic activation by p38MAPK and glucocorticoid signaling mediates induction of M2-like tumor-associated macrophages expressing the novel CD20 homolog MS4A8A. International journal of cancer Journal international du cancer 129:122–132

    Article  CAS  PubMed  Google Scholar 

  • Schmieder A, Schledzewski K, Michel J, Schonhaar K, Morias Y, Bosschaerts T, Van den Bossche J, Dorny P, Sauer A, Sticht C, Geraud C, Waibler Z, Beschin A, Goerdt S (2012) The CD20 homolog Ms4a8a integrates pro- and anti-inflammatory signals in novel M2-like macrophages and is expressed in parasite infection. Eur J Immunol 42:2971–2982

    Article  CAS  PubMed  Google Scholar 

  • Schwartz M (2010) "Tissue-repairing" blood-derived macrophages are essential for healing of the injured spinal cord: from skin-activated macrophages to infiltrating blood-derived cells? Brain Behav Immun 24:1054–1057

    Article  CAS  PubMed  Google Scholar 

  • Shechter R, London A, Varol C, Raposo C, Cusimano M, Yovel G, Rolls A, Mack M, Pluchino S, Martino G, Jung S, Schwartz M (2009) Infiltrating blood-derived macrophages are vital cells playing an anti-inflammatory role in recovery from spinal cord injury in mice. PLoS Med 6:e1000113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin T, Kim S, Moon C, Wie M, Kim H (2000) Aminoguanidine-induced amelioration of autoimmune encephalomyelitis is mediated by reduced expression of inducible nitric oxide synthase in the spinal cord. Immunol Investig 29:233–241

    Article  CAS  Google Scholar 

  • Team RC (2015) A language and environment for statistical computing. In: "R Core Team" Vienna: R Foundation for Statistical Computing.

  • Thakker P, Leach MW, Kuang W, Benoit SE, Leonard JP, Marusic S (2007) IL-23 is critical in the induction but not in the effector phase of experimental autoimmune encephalomyelitis. J Immunol 178:2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Tierney JB, Kharkrang M, La Flamme AC (2009) Type II-activated macrophages suppress the development of experimental autoimmune encephalomyelitis. Immunol Cell Biol 87:235–240

    Article  CAS  PubMed  Google Scholar 

  • Tompkins SM, Padilla J, Dal Canto MC, Ting JP, Van Kaer L, Miller SD (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183

    Article  CAS  PubMed  Google Scholar 

  • Vogelaar CF, Gervasi NM, Gumy LF, Story DJ, Raha-Chowdhury R, Leung KM, Holt CE, Fawcett JW (2009) Axonal mRNAs: characterisation and role in the growth and regeneration of dorsal root ganglion axons and growth cones. Mol Cell Neurosci 42:102–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Z, Gerstein M, Snyder M (2009) RNA-seq: a revolutionary tool for transcriptomics. Nat Rev Genet 10:57–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber MS, Prod’homme T, Youssef S, Dunn SE, Rundle CD, Lee L, Patarroyo JC, Stuve O, Sobel RA, Steinman L, Zamvil SS (2007) Type II monocytes modulate T cell-mediated central nervous system autoimmune disease. Nat Med 13:935–943

    Article  CAS  PubMed  Google Scholar 

  • Weitnauer M, Schmidt L, Ng Kuet Leong N, Muenchau S, Lasitschka F, Eckstein V, Hubner S, Tuckermann J, Dalpke AH (2014) Bronchial epithelial cells induce alternatively activated dendritic cells dependent on glucocorticoid receptor signaling. J Immunol 193:1475–1484

    Article  CAS  PubMed  Google Scholar 

  • Wuest SC, Edwan JH, Martin JF, Han S, Perry JS, Cartagena CM, Matsuura E, Maric D, Waldmann TA, Bielekova B (2011) A role for interleukin-2 trans-presentation in dendritic cell-mediated T cell activation in humans, as revealed by daclizumab therapy. Nat Med 17:604–609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JG et al. (2012) The dendritic cell receptor Clec9A binds damaged cells via exposed actin filaments. Immunity 36:646–657

    Article  CAS  PubMed  Google Scholar 

  • Zozulya AL, Clarkson BD, Ortler S, Fabry Z, Wiendl H (2010) The role of dendritic cells in CNS autoimmunity. J Mol Med 88:535–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Birgit Hohmann, Christin Liefländer, Andreas Zymny, Kristian Schütze, and Heike Ehrengard for technical assistance and Darragh O’Neill for proofreading the manuscript.

Author Contributions

B.W. performed all experiments, analyzed data, drafted the manuscript, and prepared Figs. G.P. performed experiments. M.H. analyzed RNA-Seq data. M.K. performed RNA-Seq experiments. F.L. and K.D. interpreted results. T.B. performed cell sort experiments. F.Z. designed the study, interpreted results and edited manuscript. E.W. designed the study, conceptually designed figures, interpreted results and wrote the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther Witsch.

Ethics declarations

Sources of Support

This study has been supported by the German Research Foundation (DFG, SFB-TR 128/B4 to F.Z. and T.B. and DFG, SFB-TR 128/A5 to K.D.).

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wasser, B., Pramanik, G., Hess, M. et al. Increase of Alternatively Activated Antigen Presenting Cells in Active Experimental Autoimmune Encephalomyelitis. J Neuroimmune Pharmacol 11, 721–732 (2016). https://doi.org/10.1007/s11481-016-9696-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9696-3

Keywords

Navigation