Skip to main content

Advertisement

Log in

Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood–Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

The purpose of this study was to evaluate a novel drug delivery system comprised of ferric-cobalt electro-magnetic nano-material (CoFe2O4@ BaTiO3; MENP) bound to siRNA targeting Beclin1 (MENP-siBeclin1) to cross the blood–brain barrier (BBB) and attenuate the neurotoxic effects of HIV-1 infection in the central nervous system following on-demand release of siRNA using an in vitro primary human BBB model. Beclin1 is a key protein in the regulation of the autophagy pathway and we have recently demonstrated the importance of Beclin1 in regulating viral replication and viral-induced inflammation in HIV-1-infected microglia. The MENP-siBeclin1 nano-formulation did not compromise the physiological function or integrity of the BBB model. Furthermore, the in vitro BBB data revealed that MENP-siBeclin1 could efficiently attenuate viral replication and viral-induced inflammation, likely due to STAT1/ NF-κB signaling pathways. MENP-siBeclin1 also silenced Beclin1 protein expression in HIV-1-infected microglial cells within the model system. In addition, the cytotoxic effects of direct treatment with siBeclin1 and MENP alone or in nano-formulation on primary human neuronal cells showed a minimal amount of cell death. Overall, the data shows that the nano-formulation can silence the BECN1 gene as an effective mechanism to attenuate HIV-1 replication and viral-induced inflammation in the context of the BBB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Airoldi M, Bandera A, Trabattoni D, Tagliabue B, Arosio B, Soria A, Rainone V, Lapadula G, Annoni G, Clerici M, Gori A (2012) Neurocognitive impairment in HIV-infected naive patients with advanced disease: the role of virus and intrathecal immune activation. Clinical & developmental immunology 2012:467154

    Article  Google Scholar 

  • Alirezaei M, Kiosses WB, Flynn CT, Brady NR, Fox HS (2008) Disruption of neuronal autophagy by infected microglia results in neurodegeneration. PLoS One 3:e2906

    Article  PubMed  PubMed Central  Google Scholar 

  • Atluri VS, Hidalgo M, Samikkannu T, Kurapati KR, Jayant RD, Sagar V, Nair MP (2015) Effect of human immunodeficiency virus on blood–brain barrier integrity and function: an update. Front Cell Neurosci 9:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Begley DJ (2004) Delivery of therapeutic agents to the central nervous system: the problems and the possibilities. Pharmacol Ther 104:29–45

    Article  CAS  PubMed  Google Scholar 

  • Bennasser Y, Yeung ML, Jeang KT (2007) RNAi therapy for HIV infection: principles and practicalities. BioDrugs: clinical immunotherapeutics, biopharmaceuticals and gene therapy 21:17–22

    Article  CAS  Google Scholar 

  • Chaudhuri A, Yang B, Gendelman HE, Persidsky Y, Kanmogne GD (2008) STAT1 signaling modulates HIV-1-induced inflammatory responses and leukocyte transmigration across the blood–brain barrier. Blood 111:2062–2072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng-Mayer C, Levy JA (1988) Distinct biological and serological properties of human immunodeficiency viruses from the brain. Ann Neurol 23(Suppl):S58–S61

    Article  PubMed  Google Scholar 

  • Churchill MJ, Figueiredo A, Cowley D, Gray L, Purcell DF, Sullivan JS, McPhee DA, Wesselingh SL, Brew BJ, Gorry PR (2006) Transcriptional activity of blood-and cerebrospinal fluid-derived nef/long-terminal repeat sequences isolated from a slow progressor infected with nef-deleted human immunodeficiency virus type 1 (HIV-1) who developed HIV-associated dementia. Journal of neurovirology 12:219–228

    Article  CAS  PubMed  Google Scholar 

  • Criollo A, Senovilla L, Authier H, Maiuri MC, Morselli E, Vitale I, Kepp O, Tasdemir E, Galluzzi L, Shen S, Tailler M, Delahaye N, Tesniere A, De Stefano D, Younes AB, Harper F, Pierron G, Lavandero S, Zitvogel L, Israel A, Baud V, Kroemer G (2010) The IKK complex contributes to the induction of autophagy. EMBO J 29:619–631

    Article  CAS  PubMed  Google Scholar 

  • Dahal S, Chitti SV, Nair MP, Saxena SK (2015) Interactive effects of cocaine on HIV infection: implication in HIV-associated neurocognitive disorder and neuroAIDS. Front Microbiol 6:931

    Article  PubMed  PubMed Central  Google Scholar 

  • Deretic V, Saitoh T, Akira S (2013) Autophagy in infection, inflammation and immunity. Nat Rev Immunol 13:722–737

    Article  CAS  PubMed  Google Scholar 

  • Dinkins C, Pilli M, Kehrl JH (2015) Roles of autophagy in HIV infection. Immunol Cell Biol 93:11–17

    Article  CAS  PubMed  Google Scholar 

  • El-Hage N, Bruce-Keller AJ, Knapp PE, Hauser KF (2008) CCL5/RANTES gene deletion attenuates opioid-induced increases in glial CCL2/MCP-1 immunoreactivity and activation in HIV-1 tat-exposed mice. Journal of neuroimmune pharmacology: the official journal of the Society on NeuroImmune Pharmacology 3:275–285

    Article  Google Scholar 

  • El-Hage N, Dever SM, Podhaizer EM, Arnatt CK, Zhang Y, Hauser KF (2013) A novel bivalent HIV-1 entry inhibitor reveals fundamental differences in CCR5-mu-opioid receptor interactions between human astroglia and microglia. AIDS (London, England) 27:2181–2190

    Article  CAS  Google Scholar 

  • El-Hage N, Rodriguez M, Podhaizer EM, Zou S, Dever SM, Snider SE, Knapp PE, Beardsley PM, Hauser KF (2014) Ibudilast (AV411), and its AV1013 analog, reduce HIV-1 replication and neuronal death induced by HIV-1 and morphine. AIDS. London, England

    Google Scholar 

  • El-Hage N, Rodriguez M, Dever SM, Masvekar RR, Gewirtz DA, Shacka JJ (2015) HIV-1 and morphine regulation of autophagy in microglia: limited interactions in the context of HIV-1 infection and opioid abuse. J Virol 89:1024–1035

    Article  PubMed  Google Scholar 

  • Ene L, Duiculescu D, Ruta SM (2011) How much do antiretroviral drugs penetrate into the central nervous system? Journal of medicine and life 4:432–439

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eskelinen EL (2005) Doctor Jekyll and mister Hyde: autophagy can promote both cell survival and cell death. Cell Death Differ 12(Suppl 2):1468–1472

    Article  CAS  PubMed  Google Scholar 

  • Eugenin EA, Osiecki K, Lopez L, Goldstein H, Calderon TM, Berman JW (2006) CCL2/monocyte chemoattractant protein-1 mediates enhanced transmigration of human immunodeficiency virus (HIV)-infected leukocytes across the blood–brain barrier: a potential mechanism of HIV-CNS invasion and NeuroAIDS. J Neurosci Off J Soc Neurosci 26:1098–1106

    Article  CAS  Google Scholar 

  • Fan J, Nishanian P, Breen EC, McDonald M, Fahey JL (1998) Cytokine gene expression in normal human lymphocytes in response to stimulation. Clin Diagn Lab Immunol 5:335–340

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fiandra L, Colombo M, Mazzucchelli S, Truffi M, Santini B, Allevi R, Nebuloni M, Capetti A, Rizzardini G, Prosperi D, Corsi F (2015) Nanoformulation of antiretroviral drugs enhances their penetration across the blood brain barrier in mice. Nanomedicine: nanotechnology, biology, and medicine 11:1387–1397

    CAS  Google Scholar 

  • Fields J, Dumaop W, Rockenstein E, Mante M, Spencer B, Grant I, Ellis R, Letendre S, Patrick C, Adame A, Masliah E (2013) Age-dependent molecular alterations in the autophagy pathway in HIVE patients and in a gp120 tg mouse model: reversal with beclin-1 gene transfer. Journal of neurovirology 19:89–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiume G, Vecchio E, De Laurentiis A, Trimboli F, Palmieri C, Pisano A, Falcone C, Pontoriero M, Rossi A, Scialdone A, Fasanella Masci F, Scala G, Quinto I (2012) Human immunodeficiency virus-1 tat activates NF-kappaB via physical interaction with IkappaB-alpha and p65. Nucleic Acids Res 40:3548–3562

    Article  CAS  PubMed  Google Scholar 

  • Fu LL, Cheng Y, Liu B (2013) Beclin-1: autophagic regulator and therapeutic target in cancer. Int J Biochem Cell Biol 45:921–924

    Article  CAS  PubMed  Google Scholar 

  • Graziosi C, Gantt KR, Vaccarezza M, Demarest JF, Daucher M, Saag MS, Shaw GM, Quinn TC, Cohen OJ, Welbon CC, Pantaleo G, Fauci AS (1996) Kinetics of cytokine expression during primary human immunodeficiency virus type 1 infection. Proc Natl Acad Sci U S A 93:4386–4391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guo ML, Liao K, Periyasamy P, Yang L, Cai Y, Callen SE, Buch S (2015) Cocaine-mediated microglial activation involves the ER stress-autophagy axis. Autophagy 11:995–1009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haorah J, Heilman D, Knipe B, Chrastil J, Leibhart J, Ghorpade A, Miller DW, Persidsky Y (2005) Ethanol-induced activation of myosin light chain kinase leads to dysfunction of tight junctions and blood-brain barrier compromise. Alcoholism, clinical and experimental research 29:999–1009

  • Hazleton JE, Berman JW, Eugenin EA (2010) Novel mechanisms of central nervous system damage in HIV infection. HIV/AIDS (Auckland, NZ) 2:39–49

    CAS  Google Scholar 

  • He C, Levine B (2010) The beclin 1 interactome. Curr Opin Cell Biol 22:140–149

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heaton RK, Franklin DR, Ellis RJ, McCutchan JA, Letendre SL, Leblanc S, Corkran SH, Duarte NA, Clifford DB, Woods SP, Collier AC, Marra CM, Morgello S, Mindt MR, Taylor MJ, Marcotte TD, Atkinson JH, Wolfson T, Gelman BB, McArthur JC, Simpson DM, Abramson I, Gamst A, Fennema-Notestine C, Jernigan TL, Wong J, Grant I, Group C, Group H (2011) HIV-associated neurocognitive disorders before and during the era of combination antiretroviral therapy: differences in rates, nature, and predictors. Journal of neurovirology 17:3–16

    Article  CAS  PubMed  Google Scholar 

  • Jayant RD, Atluri VS, Agudelo M, Sagar V, Kaushik A, Nair M (2015) Sustained-release nanoART formulation for the treatment of neuroAIDS. Int J Nanomedicine 10:1077–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Zhu J, Wu L, Xu G, Dai J, Liu X (2012) Tetracycline inhibits local inflammation induced by cerebral ischemia via modulating autophagy. PLoS One 7:e48672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliano RL, Alahari S, Yoo H, Kole R, Cho M (1999) Antisense pharmacodynamics: critical issues in the transport and delivery of antisense oligonucleotides. Pharm Res 16:494–502

    Article  CAS  PubMed  Google Scholar 

  • Kang R, Zeh HJ, Lotze MT, Tang D (2011) The beclin 1 network regulates autophagy and apoptosis. Cell Death Differ 18:571–580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaul M, Garden GA, Lipton SA (2001) Pathways to neuronal injury and apoptosis in HIV-associated dementia. Nature 410:988–994

    Article  CAS  PubMed  Google Scholar 

  • Kaushik A, Jayant RD, Nikkhah-Moshaie R, Bhardwaj V, Roy U, Huang Z, Ruiz A, Yndart A, Atluri V, El-Hage N, Khalili K, Nair M (2016) Magnetically guided central nervous system delivery and toxicity evaluation of magneto-electric nanocarriers. Scientific Reports 6:25309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar P, Ban HS, Kim SS, Wu H, Pearson T, Greiner DL, Laouar A, Yao J, Haridas V, Habiro K, Yang YG, Jeong JH, Lee KY, Kim YH, Kim SW, Peipp M, Fey GH, Manjunath N, Shultz LD, Lee SK, Shankar P (2008) T cell-specific siRNA delivery suppresses HIV-1 infection in humanized mice. Cell 134:577–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar A, Singh UK, Chaudhary A (2015) Targeting autophagy to overcome drug resistance in cancer therapy. Future medicinal chemistry 7:1535–1542

    Article  CAS  PubMed  Google Scholar 

  • Lamers SL, Salemi M, Galligan DC, Morris A, Gray R, Fogel G, Zhao L, McGrath MS (2010) Human immunodeficiency virus-1 evolutionary patterns associated with pathogenic processes in the brain. Journal of neurovirology 16:230–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee SK, Dykxhoorn DM, Kumar P, Ranjbar S, Song E, Maliszewski LE, Francois-Bongarcon V, Goldfeld A, Swamy NM, Lieberman J, Shankar P (2005) Lentiviral delivery of short hairpin RNAs protects CD4 T cells from multiple clades and primary isolates of HIV. Blood 106:818–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Zhang Z, Zhang X, Lin Y, Luo T, Xiao Z, Zhou Q (2016) A dual PI3K/AKT/mTOR signaling inhibitor miR-99a suppresses endometrial carcinoma. American journal of translational research 8:719–731

  • Liu Y, Levine B (2015) Autosis and autophagic cell death: the dark side of autophagy. Cell Death Differ 22:367–376

    Article  CAS  PubMed  Google Scholar 

  • Ma TY, Nguyen D, Bui V, Nguyen H, Hoa N (1999) Ethanol modulation of intestinal epithelial tight junction barrier. The American journal of physiology 276:G965–974

  • McKnight NC, Zhenyu Y (2013) Beclin 1, an essential component and master regulator of PI3K-III in health and disease. Current pathobiology reports 1:231–238

    Article  PubMed  PubMed Central  Google Scholar 

  • Minogue AM, Barrett JP, Lynch MA (2012) LPS-induced release of IL-6 from glia modulates production of IL-1beta in a JAK2-dependent manner. J Neuroinflammation 9:126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mizushima N, Yoshimori T, Levine B (2010) Methods in mammalian autophagy research. Cell 140:313–326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nair M, Guduru R, Liang P, Hong J, Sagar V, Khizroev S (2013) Externally controlled on-demand release of anti-HIV drug using magneto-electric nanoparticles as carriers. Nat Commun 4:1707

    Article  PubMed  Google Scholar 

  • Nath A, Steiner J (2014) Synaptodendritic injury with HIV-tat protein: what is the therapeutic target? Exp Neurol 251:112–114

    Article  CAS  PubMed  Google Scholar 

  • Neun BW, Stern ST (2011) Monitoring lysosomal activity in nanoparticle-treated cells. Methods Mol Biol (Clifton, NJ) 697:207–212

    Article  CAS  Google Scholar 

  • Nolting T, Lindecke A, Koutsilieri E, Maschke M, Husstedt IW, Sopper S, Stuve O, Hartung HP, Arendt G (2009) Measurement of soluble inflammatory mediators in cerebrospinal fluid of human immunodeficiency virus-positive patients at distinct stages of infection by solid-phase protein array. Journal of neurovirology 15:390–400

    Article  CAS  PubMed  Google Scholar 

  • Novina CD, Murray MF, Dykxhoorn DM, Beresford PJ, Riess J, Lee SK, Collman RG, Lieberman J, Shankar P, Sharp PA (2002) siRNA-directed inhibition of HIV-1 infection. Nat Med 8:681–686

    CAS  PubMed  Google Scholar 

  • Pardridge WM (2007) shRNA and siRNA delivery to the brain. Adv Drug Deliv Rev 59:141–152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park HY, Kim TH, Kim CG, Kim GY, Kim CM, Kim ND, Kim BW, Hwang HJ, Choi YH (2013) Purpurogallin exerts antiinflammatory effects in lipopolysaccharidestimulated BV2 microglial cells through the inactivation of the NFkappaB and MAPK signaling pathways. Int J Mol Med 32:1171–1178

    PubMed  Google Scholar 

  • Parzych KR, Klionsky DJ (2014) An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal 20:460–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pitha PM (2011) Innate antiviral response: role in HIV-1 infection. Viruses 3:1179–1203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qing G, Yan P, Qu Z, Liu H, Xiao G (2007) Hsp90 regulates processing of NF-kappa B2 p100 involving protection of NF-kappa B-inducing kinase (NIK) from autophagy-mediated degradation. Cell Res 17:520–530

    Article  CAS  PubMed  Google Scholar 

  • Rossi JJ (2006) RNAi therapeutics: SNALPing siRNAs in vivo. Gene Ther 13:583–584

    Article  CAS  PubMed  Google Scholar 

  • Ryther RC, Flynt AS, Phillips JA 3rd, Patton JG (2005) siRNA therapeutics: big potential from small RNAs. Gene Ther 12:5–11

    Article  CAS  PubMed  Google Scholar 

  • Shpilka T, Weidberg H, Pietrokovski S, Elazar Z (2011) Atg8: an autophagy-related ubiquitin-like protein family. Genome Biol 12:226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stern ST, Johnson DN (2008) Role for nanomaterial-autophagy interaction in neurodegenerative disease. Autophagy 4:1097–1100

    Article  CAS  PubMed  Google Scholar 

  • Stern ST, Adiseshaiah PP, Crist RM (2012) Autophagy and lysosomal dysfunction as emerging mechanisms of nanomaterial toxicity. Particle and fibre toxicology 9:20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun L, Liu N, Liu SS, Xia WY, Liu MY, Li LF, Gao JX (2015) Beclin-1-independent autophagy mediates programmed cancer cell death through interplays with endoplasmic reticulum and/or mitochondria in colbat chloride-induced hypoxia. Am J Cancer Res 5:2626–2642

    PubMed  PubMed Central  Google Scholar 

  • Suri SS, Fenniri H, Singh B (2007) Nanotechnology-based drug delivery systems. J Occup Med Toxicol (London, England) 2:16

    Article  Google Scholar 

  • Wang Z, Pekarskaya O, Bencheikh M, Chao W, Gelbard HA, Ghorpade A, Rothstein JD, Volsky DJ (2003) Reduced expression of glutamate transporter EAAT2 and impaired glutamate transport in human primary astrocytes exposed to HIV-1 or gp120. Virology 312:60–73

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Wang H, Jing H, Wang S, Kang L, Gao X, Hu L, Zheng X (2012) Anti-inflammatory effects of isopropyl 3-(3, 4-dihydroxyphenyl)-2-hydroxypropanoate, a novel metabolite from danshen, on activated microglia. The Chinese journal of physiology 55:428–434

    Article  CAS  PubMed  Google Scholar 

  • Wohlfart S, Gelperina S, Kreuter J (2012) Transport of drugs across the blood–brain barrier by nanoparticles. Journal of controlled release: official journal of the Controlled Release Society 161:264–273

    Article  CAS  Google Scholar 

  • Wu H, Zhang HJ, Zhang XM, Xu HF, Wang M, Huang JD, Zheng BJ (2012) Identification of drug resistant mutations in HIV-1 CRF07_BC variants selected by nevirapine in vitro. PLoS One 7:e44333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang B, Akhter S, Chaudhuri A, Kanmogne GD (2009) HIV-1 gp120 induces cytokine expression, leukocyte adhesion, and transmigration across the blood–brain barrier: modulatory effects of STAT1 signaling. Microvasc Res 77:212–219

    Article  CAS  PubMed  Google Scholar 

  • Yue Z, Jin S, Yang C, Levine AJ, Heintz N (2003) Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci U S A 100:15077–15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the support of the National Institutes of Health (NIH)-National Institute on Drug Abuse (NIDA) grants R01 DA036154 to NEH and R01DA034547 to MN.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nazira El-Hage.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, M., Kaushik, A., Lapierre, J. et al. Electro-Magnetic Nano-Particle Bound Beclin1 siRNA Crosses the Blood–Brain Barrier to Attenuate the Inflammatory Effects of HIV-1 Infection in Vitro. J Neuroimmune Pharmacol 12, 120–132 (2017). https://doi.org/10.1007/s11481-016-9688-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-016-9688-3

Keywords

Navigation