Skip to main content

NMR-Based Metabolomics Separates the Distinct Stages of Disease in a Chronic Relapsing Model of Multiple Sclerosis


Relapsing experimental allergic encephalomyelitis (Cr-EAE) is commonly used to explore the pathogenesis and efficacy of new therapies for MS, but it is unclear whether the metabolome of Cr-EAE is comparable to human multiple sclerosis (MS). For MS, the diagnosis and staging can be achieved by metabolomics on blood using a combination of magnetic resonance spectroscopy and partial least squares discriminant analysis (PLS-DA). Here, we sought to discover whether this approach could be used to differentiate between sequential disease states in Cr-EAE and whether the same metabolites would be discriminatory. Urine and plasma samples were obtained at different time-points from a clinically relevant model of MS. Using PLS-DA modelling for the urine samples furnished some predictive models, but could not discriminate between all disease states. However, PLS-DA modelling of the plasma samples was able to distinguish between animals with clinically silent disease (day 10, 28) and animals with active disease (day 14, 38). We were also able to distinguish Cr-EAE mice from naive mice at all-time points and control mice, treated with complete Freund’s adjuvant alone, at day 14 and 38. Key metabolites that underpin these models included fatty acids, glucose and taurine. Two of these metabolites, fatty acids and glucose, were also key metabolites in separating relapsing-remitting MS from secondary-progressive MS in the human study. These results demonstrate the sensitivity of this metabolomics approach for distinguishing between different disease states. Furthermore, some, but not all, of the changes in metabolites were conserved in humans and the mouse model, which could be useful for future drug development.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4


  • ‘t Hart BA, Gran B, Weissert R (2011) EAE: imperfect but useful models of multiple sclerosis. Trends Mol Med 17:119–125

    Article  PubMed  Google Scholar 

  • Ahmed Z, Gveric D, Pryce G, Baker D, Leonard JP, Cuzner ML (2001) Myelin/Axonal pathology in interleukin-12 induced serial relapses of experimental allergic encephalomyelitis in the lewis rat. Am J Pathol 158:2127–2138

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Alvord EC Jr (1984) The challenge: how good a model of MS is EAE today? Prog Clin Biol Res 146:3–5

    PubMed  Google Scholar 

  • Amor S, Smith PA, Bert’t H, Baker D (2005) Biozzi mice: of mice and human neurological diseases. J Neuroimmunol 165:1–10

    Article  CAS  PubMed  Google Scholar 

  • Baker D, O’Neill JK, Gschmeissner SE, Wilcox CE, Butter C, Turk JL (1990) Induction of chronic relapsing experimental allergic encephalomyelitis in Biozzi mice. J Neuroimmunol 28:261–270

    Article  CAS  PubMed  Google Scholar 

  • Bao Q, Feng J, Chen L, Chen F, Liu Z, Jiang B, Liu C (2013) A robust automatic phase correction method for signal dense spectra. J Magn Reson 234:82–89

    Article  CAS  PubMed  Google Scholar 

  • Barallobre-Barreiro J, Chung Y-L, Mayr M (2013) Proteomics and Metabolomics for Mechanistic Insights and Biomarker Discovery in Cardiovascular Disease. Revista Española de Cardiología (English Edition)

  • Barkhof F (2002) The clinico-radiological paradox in multiple sclerosis revisited. Curr Opin Neurol 15:239–245

    Article  PubMed  Google Scholar 

  • Bielekova B, Martin R (2004) Development of biomarkers in multiple sclerosis. Brain 127:1463–1478

    Article  PubMed  Google Scholar 

  • Billiau A, Matthys P (2001) Modes of action of Freund’s adjuvants in experimental models of autoimmune diseases. J Leukoc Biol 70:849–860

    CAS  PubMed  Google Scholar 

  • Brown A, McFarlin D (1981) Relapsing experimental allergic encephalomyelitis in the SJL/J mouse. Laboratory investigation; a journal of technical methods and pathology 45:278–284.

  • Dickens AM, Larkin JR, Griffin JL, Cavey A, Matthews L, Turner MR, Wilcock GK, Davis BG, Claridge TDW, Palace J, Anthony DC, Sibson NR (2014) A type 2 biomarker separates relapsing-remitting from secondary progressive multiple sclerosis. Neurology 83:1492–1499

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Fan WMT (1996) Metabolite profiling by one- and two-dimensional NMR analysis of complex mixtures. Prog Nucl Magn Reson Spectrosc 28:161–219

    Article  CAS  Google Scholar 

  • Fan AY, Lao L, Zhang RX, Zhou AN, Wang LB, Moudgil KD, Lee DYW, Ma ZZ, Zhang WY, Berman BM (2005) Effects of an acetone extract of Boswellia carterii Birdw. (Burseraceae) gum resin on adjuvant-induced arthritis in lewis rats. J Ethnopharmacol 101:104–109

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni G, Lai M, Kidd D, Thorpe JW, Miller DH, Thompson AJ, Keir G, Feldmann M, Thompson EJ (1997) Daily urinary neopterin excretion as an immunological marker of disease activity in multiple sclerosis. Brain 120(Pt 1):1–13

    Article  PubMed  Google Scholar 

  • Griffin JL, Anthony DC, Campbell SJ, Gauldie J, Pitossi F, Styles P, Sibson NR (2004) Study of cytokine induced neuropathology by high resolution proton NMR spectroscopy of rat urine. FEBS Lett 568:49–54

    Article  CAS  PubMed  Google Scholar 

  • Hassan-Smith G, Wallace GR, Douglas MR, Sinclair AJ (2012) The role of metabolomics in neurological disease. J Neuroimmunol 248:48–52

    Article  CAS  PubMed  Google Scholar 

  • Heather LC, Wang X, West JA, Griffin JL (2012) A practical guide to metabolomic profiling as a discovery tool for human heart disease. J Mol Cell Cardiol

  • Jackson SJ, Lee J, Nikodemova M, Fabry Z, Duncan ID (2009) Quantification of myelin and axon pathology during relapsing progressive experimental autoimmune encephalomyelitis in the Biozzi ABH mouse. J Neuropathol Exp Neurol 68:616–625

    Article  CAS  PubMed  Google Scholar 

  • Kuhle J, Leppert D, Petzold A, Regeniter A, Schindler C, Mehling M, Anthony DC, Kappos L, Lindberg RLP (2011) Neurofilament heavy chain in CSF correlates with relapses and disability in multiple sclerosis. Neurology 76:1206–1213

    Article  CAS  PubMed  Google Scholar 

  • Lassmann H (1983) Chronic relapsing experimental allergic encephalomyelitis: its value as an experimental model for multiple sclerosis. J Neurol 229:207–220

    Article  CAS  PubMed  Google Scholar 

  • Lindon JC, Holmes E, Nicholson JK (2001) Pattern recognition methods and applications in biomedical magnetic resonance. Prog Nucl Magn Reson Spectrosc 39:1–40

    Article  CAS  Google Scholar 

  • Mardiguian S, Serres S, Ladds E, Campbell SJ, Wilainam P, McFadyen C, McAteer M, Choudhury RP, Smith P, Saunders F (2013) Anti–IL-17A treatment reduces clinical score and VCAM-1 expression detected by < i > in Vivo</i > magnetic resonance imaging in chronic relapsing EAE ABH mice. Am J Pathol 182:2071–2081

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Matsumo Y, Sakuma H, Miyakoshi A, Tsukada Y, Kohyama K, Park IK, Tanuma N (2005) Characterization of relapsing autoimmune encephalomyelitis and its treatment with decoy chemokine receptor genes. J Neuroimmunol 170:49–61

    Article  CAS  PubMed  Google Scholar 

  • Meyer UA, Zanger UM, Schwab M (2013) Omics and drug response. Annu Rev Pharmacol Toxicol 53:475–502

    Article  CAS  PubMed  Google Scholar 

  • Mokhtarian F, McFarlin D, Raine C (1984) Adoptive transfer of myelin basic protein-sensitized T cells produces chronic relapsing demyelinating disease in mice

  • Noseworthy JH, Lucchinetti C, Rodriguez M, Weinshenker BG (2000) Multiple sclerosis. N Engl J Med 343:938–952

    Article  CAS  PubMed  Google Scholar 

  • Ott M, Demisch L, Engelhardt W, Fischer PA (1993) Interleukin-2, soluble interleukin-2-receptor, neopterin, L-tryptophan and beta 2-microglobulin levels in CSF and serum of patients with relapsing remitting or chronic progressive multiple sclerosis. J Neurol 241:108–114

    Article  CAS  PubMed  Google Scholar 

  • Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077

    Article  CAS  PubMed  Google Scholar 

  • Salek RM, Xia J, Innes A, Sweatman BC, Adalbert R, Randle S, McGowan E, Emson PC, Griffin JL (2010) A metabolomic study of the CRND8 transgenic mouse model of Alzheimer’s disease. Neurochem Int 56:937–947

    Article  CAS  PubMed  Google Scholar 

  • Serres S, Mardiguian S, Campbell SJ, McAteer MA, Akhtar A, Krapitchev A, Choudhury RP, Anthony DC, Sibson NR (2011) VCAM-1-targeted magnetic resonance imaging reveals subclinical disease in a mouse model of multiple sclerosis. FASEB J

  • Skov T, van den Berg F, Tomasi G, Bro R (2006) Automated alignment of chromatographic data. J Chemom 20:484–497

    Article  CAS  Google Scholar 

  • Steinman L, Zamvil SS (2005) Virtues and pitfalls of EAE for the development of therapies for multiple sclerosis. Trends Immunol 26:565–571

    Article  CAS  PubMed  Google Scholar 

  • Walsh M, Brennan L, Malthouse J, Roche H, Gibney M (2006) Effect of acute dietary standardization on the urinary, plasma, and salivary metabolomic profiles of healthy humans. Am J Clin Nutr 84:531

    CAS  PubMed  Google Scholar 

  • Waterman C, Currie R, Cottrell L, Dow J, Wright J, Waterfield C, Griffin J (2010) An integrated functional genomic study of acute phenobarbital exposure in the rat. BMC Genomics 11:9

    PubMed Central  Article  PubMed  Google Scholar 

  • Whitaker JN, McKeehan A, Freeman DW (1994) Monoclonal and polyclonal antibody responses to the myelin basic protein epitope present in human urine. J Neuroimmunol 52:53–60

    Article  CAS  PubMed  Google Scholar 

  • Whitaker JN, Kachelhofer RD, Bradley EL, Burgard S, Layton BA, Reder AT, Morrison W, Zhao GJ, Paty DW (1995) Urinary myelin basic protein-like material as a correlate of the progression of multiple sclerosis. Ann Neurol 38:625–632

    Article  CAS  PubMed  Google Scholar 

  • Wishart DS et al (2007) HMDB: the Human Metabolome Database. Nucleic Acids Res 35:D521–D526

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, Hau DD, Psychogios N, Dong E, Bouatra S (2009) HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res 37:D603

    PubMed Central  Article  CAS  PubMed  Google Scholar 

  • Zamvil S, Nelson P, Trotter J, Mitchell D, Knobler R, Fritz R, Steinman L (1985) T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination

Download references

Compliance with Ethical Standards

The authors declare that the manuscript has not been submitted to another journal; all authors agree with the submission; and there are no conflicts of interest. All animal study protocols were approved by the University of Oxford and the UK home office - license number: 30/2524.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Nicola R. Sibson.

Additional information

Alex M. Dickens and James R. Larkin contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.


(PPTX 302 kb)


(PPTX 94 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dickens, A.M., Larkin, J.R., Davis, B.G. et al. NMR-Based Metabolomics Separates the Distinct Stages of Disease in a Chronic Relapsing Model of Multiple Sclerosis. J Neuroimmune Pharmacol 10, 435–444 (2015).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Metabolomics
  • Experimental allergic encephalomyelitis
  • Multiple sclerosis
  • Diagnostics
  • Mouse