Skip to main content

Advertisement

Log in

The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids

  • INVITED REVIEW
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

As a therapeutic agent, most people are familiar with the palliative effects of the primary psychoactive constituent of Cannabis sativa (CS), Δ9-tetrahydrocannabinol (THC), a molecule active at both the cannabinoid 1 (CB1) and cannabinoid 2 (CB2) receptor subtypes. Through the activation primarily of CB1 receptors in the central nervous system, THC can reduce nausea, emesis and pain in cancer patients undergoing chemotherapy. During the last decade, however, several studies have now shown that CB1 and CB2 receptor agonists can act as direct antitumor agents in a variety of aggressive cancers. In addition to THC, there are many other cannabinoids found in CS, and a majority produces little to no psychoactivity due to the inability to activate cannabinoid receptors. For example, the second most abundant cannabinoid in CS is the non-psychoactive cannabidiol (CBD). Using animal models, CBD has been shown to inhibit the progression of many types of cancer including glioblastoma (GBM), breast, lung, prostate and colon cancer. This review will center on mechanisms by which CBD, and other plant-derived cannabinoids inefficient at activating cannabinoid receptors, inhibit tumor cell viability, invasion, metastasis, angiogenesis, and the stem-like potential of cancer cells. We will also discuss the ability of non-psychoactive cannabinoids to induce autophagy and apoptotic-mediated cancer cell death, and enhance the activity of first-line agents commonly used in cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agurell S, Carlsson S, Lindgren JE, Ohlsson A, Gillespie H, Hollister LE (1981) Interactions of delta 1-tetrahydrocannabinol with cannabinol and cannabidiol following oral administration in man. Assay of cannabinol and cannabidiol by mass fragmentography. Experientia 37:1090–1092

    Article  CAS  PubMed  Google Scholar 

  • Albanese C, Johnson J, Watanabe G, Eklund N, Vu D, Arnold A, Pestell RG (1995) Transforming p21ras mutants and c-Ets-2 activate the cyclin D1 promoter through distinguishable regions. J Biol Chem 270:23589–23597

    Article  CAS  PubMed  Google Scholar 

  • Alozie SO, Martin BR, Harris LS, Dewey WL (1980) 3H-delta 9-Tetrahydrocannabinol, 3H-cannabinol and 3H-cannabidiol: penetration and regional distribution in rat brain. Pharmacol Biochem Behav 12:217–218

    Article  CAS  PubMed  Google Scholar 

  • Armstrong JL, Hill DS, McKee CS, Hernandez-Tiedra S, Lorente M, Lopez-Valero I, Eleni Anagnostou M, Babatunde F, Corazzari M, Redfern CP, Velasco G and Lovat PE (2015) Exploiting Cannabinoid-Induced Cytotoxic Autophagy to Drive Melanoma Cell Death. J Invest Dermatol

  • Baldwin JM (1994) Structure and function of receptors coupled to G proteins. Curr Opin Cell Biol 6

  • Bifulco M, Di Marzo V (2002) Targeting the endocannabinoid system in cancer therapy: a call for further research. Nat Med 8:547–550

    Article  CAS  PubMed  Google Scholar 

  • Bornheim LM, Grillo MP (1998) Characterization of cytochrome P450 3A inactivation by cannabidiol: possible involvement of cannabidiol-hydroxyquinone as a P450 inactivator. Chem Res Toxicol 11:1209–1216

    Article  CAS  PubMed  Google Scholar 

  • Brady KT, Balster RL (1980) The effects of delta 9-tetrahydrocannabinol alone and in combination with cannabidiol on fixed-interval performance in rhesus monkeys. Psychopharmacology 72:21–26

    Article  CAS  PubMed  Google Scholar 

  • Caffarel MM, Andradas C, Mira E, Perez-Gomez E, Cerutti C, Moreno-Bueno G, Flores JM, Garcia-Real I, Palacios J, Manes S, Guzman M, Sanchez C (2010) Cannabinoids reduce ErbB2-driven breast cancer progression through Akt inhibition. Mol Cancer 9:196

    Article  PubMed Central  PubMed  Google Scholar 

  • Cardaci S, Filomeni G, Ciriolo MR (2012) Redox implications of AMPK-mediated signal transduction beyond energetic clues. J Cell Sci 125:2115–2125

    Article  CAS  PubMed  Google Scholar 

  • Carracedo A, Gironella M, Lorente M, Garcia S, Guzman M, Velasco G, Iovanna JL (2006a) Cannabinoids induce apoptosis of pancreatic tumor cells via endoplasmic reticulum stress-related genes. Cancer Res 66:6748–6755

    Article  CAS  PubMed  Google Scholar 

  • Carracedo A, Lorente M, Egia A, Blazquez C, Garcia S, Giroux V, Malicet C, Villuendas R, Gironella M, Gonzalez-Feria L, Piris MA, Iovanna JL, Guzman M, Velasco G (2006b) The stress-regulated protein p8 mediates cannabinoid-induced apoptosis of tumor cells. Cancer Cell 9:301–312

    Article  CAS  PubMed  Google Scholar 

  • Dalton WS, Martz R, Lemberger L, Rodda BE, Forney RB (1976) Influence of cannabidiol on delta-9-tetrahydrocannabinol effects. Clin Pharmacol Ther 19:300–309

    CAS  PubMed  Google Scholar 

  • Dando I, Donadelli M, Costanzo C, Dalla Pozza E, D’Alessandro A, Zolla L, Palmieri M (2013) Cannabinoids inhibit energetic metabolism and induce AMPK-dependent autophagy in pancreatic cancer cells. Cell Death Dis 4:e664

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Davis WM, Hatoum NS (1983) Neurobehavioral actions of cannabichromene and interactions with delta 9-tetrahydrocannabinol. Gen Pharmacol 14:247–252

    Article  CAS  PubMed  Google Scholar 

  • De Petrocellis L, Ligresti A, Schiano Moriello A, Iappelli M, Verde R, Stott CG, Cristino L, Orlando P, Di Marzo V (2013) Non-THC cannabinoids inhibit prostate carcinoma growth in vitro and in vivo: pro-apoptotic effects and underlying mechanisms. Br J Pharmacol 168:79–102

    Article  PubMed Central  PubMed  Google Scholar 

  • Donadelli M, Dando I, Zaniboni T, Costanzo C, Dalla Pozza E, Scupoli MT, Scarpa A, Zappavigna S, Marra M, Abbruzzese A, Bifulco M, Caraglia M, Palmieri M (2011) Gemcitabine/cannabinoid combination triggers autophagy in pancreatic cancer cells through a ROS-mediated mechanism. Cell Death Dis 2:e152

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Edery H, Grunfeld Y, Ben-Zvi Z, Mechoulam R (1971) Structural requirements for cannabinoid activity. Ann NY Acad Sci 191:40–53

    Article  CAS  Google Scholar 

  • Elbaz M, Nasser MW, Ravi J, Wani NA, Ahirwar DK, Zhao H, Oghumu S, Satoskar AR, Shilo K, Carson WE, 3rd and Ganju RK (2015) Modulation of the tumor microenvironment and inhibition of EGF/EGFR pathway: Novel anti-tumor mechanisms of Cannabidiol in breast cancer. Mol Oncol

  • Emery SM, Alotaibi MR, Tao Q, Selley DE, Lichtman AH, Gewirtz DA (2014) Combined antiproliferative effects of the aminoalkylindole WIN55,212-2 and radiation in breast cancer cells. J Pharmacol Exp Ther 348:293–302

    Article  PubMed  Google Scholar 

  • Flygare J, Sander B (2008) The endocannabinoid system in cancer-potential therapeutic target? Semin Cancer Biol 18:176–189

    Article  CAS  PubMed  Google Scholar 

  • Fong S, Itahana Y, Sumida T, Singh J, Coppe JP, Liu Y, Richards PC, Bennington JL, Lee NM, Debs RJ, Desprez PY (2003) Id-1 as a molecular target in therapy for breast cancer cell invasion and metastasis. Proc Natl Acad Sci U S A 100:13543–13548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Freimuth N, Ramer R, Hinz B (2010) Antitumorigenic effects of cannabinoids beyond apoptosis. J Pharmacol Exp Ther 332:336–344

    Article  CAS  PubMed  Google Scholar 

  • Galve-Roperh I, Sanchez C, Cortes ML, del Pulgar TG, Izquierdo M, Guzman M (2000) Anti-tumoral action of cannabinoids: involvement of sustained ceramide accumulation and extracellular signal-regulated kinase activation. Nat Med 6:313–319

    Article  CAS  PubMed  Google Scholar 

  • Guimaraes FS, de Aguiar JC, Mechoulam R, Breuer A (1994) Anxiolytic effect of cannabidiol derivatives in the elevated plus-maze. Gen Pharmacol 25:161–164

    Article  CAS  PubMed  Google Scholar 

  • Guindon J, Hohmann AG (2011) The endocannabinoid system and cancer: therapeutic implication. Br J Pharmacol 163:1447–1463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gupta GP, Perk J, Acharyya S, de Candia P, Mittal V, Todorova-Manova K, Gerald WL, Brogi E, Benezra R, Massague J (2007) ID genes mediate tumor reinitiation during breast cancer lung metastasis. Proc Natl Acad Sci U S A 104:19506–19511

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hampson AJ, Grimaldi M, Axelrod J, Wink D (1998) Cannabidiol and (-)Delta9-tetrahydrocannabinol are neuroprotective antioxidants. Proc Natl Acad Sci U S A 95:8268–8273

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hiltunen AJ, Jarbe TU, Wangdahl K (1988) Cannabinol and cannabidiol in combination: temperature, open-field activity, and vocalization. Pharmacol Biochem Behav 30:675–678

    Article  CAS  PubMed  Google Scholar 

  • Hiltunen AJ, Jarbe TU, Kamkar MR, Archer T (1989) Behaviour in rats maintained by low differential reinforcement rate: effects of delta 1-tetrahydrocannabinol, cannabinol and cannabidiol, alone and in combination. Neuropharmacology 28:183–189

    Article  CAS  PubMed  Google Scholar 

  • Holland ML, Panetta JA, Hoskins JM, Bebawy M, Roufogalis BD, Allen JD, Arnold JC (2006) The effects of cannabinoids on P-glycoprotein transport and expression in multidrug resistant cells. Biochem Pharmacol 71:1146–1154

    Article  CAS  PubMed  Google Scholar 

  • Holland ML, Lau DT, Allen JD, Arnold JC (2007) The multidrug transporter ABCG2 (BCRP) is inhibited by plant-derived cannabinoids. Br J Pharmacol 152:815–824

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hollister LE, Gillespie H (1975) Interactions in man of delta-9-tetrahydrocannabinol. II. Cannabinol and cannabidiol. Clin Pharmacol Ther 18:80–83

    CAS  PubMed  Google Scholar 

  • Howlett AC (1987) Cannabinoid inhibition of adenylate cyclase: relative activity of the constituents and metabolites of marijuana. Neuropharmacology 26:507–512

    Article  CAS  PubMed  Google Scholar 

  • Hu H, Han HY, Wang YL, Zhang XP, Chua CW, Wong YC, Wang XF, Ling MT, Xu KX (2009) The role of Id-1 in chemosensitivity and epirubicin-induced apoptosis in bladder cancer cells. Oncol Rep 21:1053–1059

    CAS  PubMed  Google Scholar 

  • Huffman JW, Shu Y, Showalter V, Abood ME, Wiley JL, Compton DR, Martin BR, Bramblett DR, Reggio PH (1996) Synthesis and pharmacology of a very potent cannabinoid lacking a phenolic hydroxyl with high affinity for the CB2 receptor. J Med Chem 39:3875–3877

    Article  CAS  PubMed  Google Scholar 

  • Hunt CA, Jones RT, Herning RI, Bachman J (1981) Evidence that cannabidiol does not significantly alter the pharmacokinetics of tetrahydrocannabinol in man. J Pharmacokinet Biopharm 9:245–260

    Article  CAS  PubMed  Google Scholar 

  • Jacobsson SO, Rongard E, Stridh M, Tiger G, Fowler CJ (2000) Serum-dependent effects of tamoxifen and cannabinoids upon C6 glioma cell viability. Biochem Pharmacol 60:1807–1813

    Article  CAS  PubMed  Google Scholar 

  • Jaeger W, Benet LZ, Bornheim LM (1996) Inhibition of cyclosporine and tetrahydrocannabinol metabolism by cannabidiol in mouse and human microsomes. Xenobiotica 26:275–284

    Article  CAS  PubMed  Google Scholar 

  • Jarbe TU, Hiltunen AJ (1987) Cannabimimetic activity of cannabinol in rats and pigeons. Neuropharmacology 26:219–228

    Article  CAS  PubMed  Google Scholar 

  • Karler R, Turkanis SA (1979) Cannabis and epilepsy. In: Nahas GG, Paton WDM (eds) Marihuana: biological effects, analysis, metabolism, cellular responses, reproduction and brain. Pergamon Press, Oxford, pp 619–641

    Chapter  Google Scholar 

  • Klein TW (2005) Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat Rev Immunol 5:400–411

    Article  CAS  PubMed  Google Scholar 

  • Kogan NM, Rabinowitz R, Levi P, Gibson D, Sandor P, Schlesinger M, Mechoulam R (2004) Synthesis and antitumor activity of quinonoid derivatives of cannabinoids. J Med Chem 47:3800–3806

    Article  CAS  PubMed  Google Scholar 

  • Kogan NM, Schlesinger M, Priel E, Rabinowitz R, Berenshtein E, Chevion M, Mechoulam R (2007) HU-331, a novel cannabinoid-based anticancer topoisomerase II inhibitor. Mol Cancer Ther 6:173–183

    Article  CAS  PubMed  Google Scholar 

  • Laurent A, Nicco C, Chereau C, Goulvestre C, Alexandre J, Alves A, Levy E, Goldwasser F, Panis Y, Soubrane O, Weill B, Batteux F (2005) Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res 65:948–956

    CAS  PubMed  Google Scholar 

  • Ligresti A, Moriello AS, Starowicz K, Matias I, Pisanti S, De Petrocellis L, Laezza C, Portella G, Bifulco M, Di Marzo V (2006) Antitumor activity of plant cannabinoids with emphasis on the effect of cannabidiol on human breast carcinoma. J Pharmacol Exp Ther 318:1375–1387

    Article  CAS  PubMed  Google Scholar 

  • Malfait AM, Gallily R, Sumariwalla PF, Malik AS, Andreakos E, Mechoulam R, Feldmann M (2000) The nonpsychoactive cannabis constituent cannabidiol is an oral anti-arthritic therapeutic in murine collagen-induced arthritis. Proc Natl Acad Sci U S A 97:9561–9566

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, Wang M, Hu B, Cheng SY, Sobol RW, Nakano I (2013) Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci U S A 110:8644–8649

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Marcu JP, Christian RT, Lau D, Zielinski AJ, Horowitz MP, Lee J, Pakdel A, Allison J, Limbad C, Moore DH, Yount GL, Desprez PY, McAllister SD (2010) Cannabidiol enhances the inhibitory effects of delta9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival. Mol Cancer Ther 9:180–189

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Massi P, Vaccani A, Ceruti S, Colombo A, Abbracchio MP, Parolaro D (2004) Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. J Pharmacol Exp Ther 308:838–845

    Article  CAS  PubMed  Google Scholar 

  • Massi P, Vaccani A, Bianchessi S, Costa B, Macchi P, Parolaro D (2006) The non-psychoactive cannabidiol triggers caspase activation and oxidative stress in human glioma cells. Cell Mol Life Sci 63:2057–2066

    Article  CAS  PubMed  Google Scholar 

  • Massi P, Valenti M, Vaccani A, Gasperi V, Perletti G, Marras E, Fezza F, Maccarrone M and Parolaro D (2008) 5-Lipoxygenase and anandamide hydrolase (FAAH) mediate the antitumor activity of cannabidiol, a non-psychoactive cannabinoid. J Neurochem 104:1091–1100

  • Massi P, Solinas M, Cinquina V, Parolaro D (2012) Cannabidiol as potential anticancer drug. Br J Clin Pharmacol 75:303–312

    Article  PubMed Central  Google Scholar 

  • Mato S, Victoria Sanchez-Gomez M, Matute C (2010) Cannabidiol induces intracellular calcium elevation and cytotoxicity in oligodendrocytes. Glia 58:1739–1747

  • McAllister SD, Christian RT, Horowitz MP, Garcia A, Desprez PY (2007) Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells. Mol Cancer Ther 6:2921–2927

    Article  CAS  PubMed  Google Scholar 

  • McAllister SD, Murase R, Christian RT, Lau D, Zielinski AJ, Allison J, Almanza C, Pakdel A, Lee J, Limbad C, Liu Y, Debs RJ, Moore DH, Desprez PY (2010) Pathways mediating the effects of cannabidiol on the reduction of breast cancer cell proliferation, invasion, and metastasis. Breast Cancer Res Treat 129:37–47

    Article  PubMed Central  PubMed  Google Scholar 

  • McKallip RJ, Jia W, Schlomer J, Warren JW, Nagarkatti PS, Nagarkatti M (2006) Cannabidiol-induced apoptosis in human leukemia cells: a novel role of cannabidiol in the regulation of p22phox and Nox4 expression. Mol Pharmacol 70:897–908

    Article  CAS  PubMed  Google Scholar 

  • McPartland JM, Russo EB (2001) Cannabis and cannabis extract: greater than the sum of the parts? J Cannabis Therapeut 1:103–132

    Article  CAS  Google Scholar 

  • Mechoulam R, Ben-Shabat S, Hanus S, Ligumsky M, Kaminski NE, Schatz AR, Gopher A, Almong S, Martin BR, Compton DR, Pertwee RG, Griffin G, Bayewitch M, Barg J, Vogel Z (1995) Identification of a 2-mono-glyceride, present in canine gut, that biinds to cannabinoid receptors. Biochem Pharmacol 50:83–90

    Article  CAS  PubMed  Google Scholar 

  • Minn AJ, Gupta GP, Siegel PM, Bos PD, Shu W, Giri DD, Viale A, Olshen AB, Gerald WL, Massague J (2005) Genes that mediate breast cancer metastasis to lung. Nature 436:518–524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Murase R, Kawamura R, Singer E, Pakdel A, Sarma P, Judkins J, Elwakeel E, Dayal S, Martinez-Martinez E, Amere M, Gujjar R, Mahadevan A, Desprez PY, McAllister SD (2014) Targeting multiple cannabinoid antitumor pathways with a resorcinol derivative leads to inhibition of advanced stages of breast cancer. Br J Pharmacol 171:4464–4477

    Article  CAS  PubMed  Google Scholar 

  • Nasser MW, Qamri Z, Deol YS, Smith D, Shilo K, Zou X, Ganju RK (2011) Crosstalk between chemokine receptor CXCR4 and cannabinoid receptor CB2 in modulating breast cancer growth and invasion. PLoS One 6:e23901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ohlsson A, Lindgren JE, Wahlen A, Agurell S, Hollister LE, Gillespie HK (1980) Plasma delta-9 tetrahydrocannabinol concentrations and clinical effects after oral and intravenous administration and smoking. Clin Pharmacol Ther 28:409–416

    Article  CAS  PubMed  Google Scholar 

  • Perez-Reyes M, Timmons MC, Davis KH, Wall EM (1973) A comparison of the pharmacological activity in man of intraveneously administered D9-tetrahydrocannabinol, cannabinol, and cannabidiol. Experientia 29:1368–1369

    Article  CAS  PubMed  Google Scholar 

  • Pertwee RG (1997) Pharmacology of cannabinoid CB1 and CB2 receptors. Pharmacol Ther 74:129–180

    CAS  PubMed  Google Scholar 

  • Pertwee RG (2006) Cannabinoid pharmacology: the first 66 years. Br J Pharmacol 147(Suppl 1):S163–S171

    CAS  PubMed Central  PubMed  Google Scholar 

  • Piomelli D (2003) The molecular logic of endocannabinoid signalling. Nat Rev Neurosci 4:873–884

    Article  CAS  PubMed  Google Scholar 

  • Ponz-Sarvise M, Nguewa PA, Pajares MJ, Agorreta J, Lozano MD, Redrado M, Pio R, Behrens C, Wistuba II, Garcia-Franco CE, Garcia-Foncillas J, Montuenga LM, Calvo A, Gil-Bazo I (2011) Inhibitor of differentiation-1 as a novel prognostic factor in NSCLC patients with adenocarcinoma histology and its potential contribution to therapy resistance. Clin Cancer Res 17:4155–4166

    Article  CAS  PubMed  Google Scholar 

  • Preet A, Qamri Z, Nasser MW, Prasad A, Shilo K, Zou X, Groopman JE, Ganju RK (2011) Cannabinoid receptors, CB1 and CB2, as novel targets for inhibition of non-small cell lung cancer growth and metastasis. Cancer Prev Res (Phila) 4:65–75

    Article  CAS  Google Scholar 

  • Qamri Z, Preet A, Nasser MW, Bass CE, Leone G, Barsky SH, Ganju RK (2009) Synthetic cannabinoid receptor agonists inhibit tumor growth and metastasis of breast cancer. Mol Cancer Ther 8:3117–3129

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ramer R, Hinz B (2008) Inhibition of cancer cell invasion by cannabinoids via increased expression of tissue inhibitor of matrix metalloproteinases-1. J Natl Cancer Inst 100:59–69

    Article  CAS  PubMed  Google Scholar 

  • Ramer R, Merkord J, Rohde H, Hinz B (2010a) Cannabidiol inhibits cancer cell invasion via upregulation of tissue inhibitor of matrix metalloproteinases-1. Biochem Pharmacol 79:955–966

    Article  CAS  PubMed  Google Scholar 

  • Ramer R, Rohde A, Merkord J, Rohde H, Hinz B (2010b) Decrease of plasminogen activator inhibitor-1 may contribute to the anti-invasive action of cannabidiol on human lung cancer cells. Pharm Res 27:2162–2174

    Article  CAS  PubMed  Google Scholar 

  • Ramer R, Bublitz K, Freimuth N, Merkord J, Rohde H, Haustein M, Borchert P, Schmuhl E, Linnebacher M, Hinz B (2011) Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J 26:1535–1548

    Article  PubMed  Google Scholar 

  • Ramer R, Heinemann K, Merkord J, Rohde H, Salamon A, Linnebacher M, Hinz B (2013) COX-2 and PPAR-gamma confer cannabidiol-induced apoptosis of human lung cancer cells. Mol Cancer Ther 12:69–82

    Article  CAS  PubMed  Google Scholar 

  • Rimmerman N, Ben-Hail D, Porat Z, Juknat A, Kozela E, Daniels MP, Connelly PS, Leishman E, Bradshaw HB, Shoshan-Barmatz V, Vogel Z (2013) Direct modulation of the outer mitochondrial membrane channel, voltage-dependent anion channel 1 (VDAC1) by cannabidiol: a novel mechanism for cannabinoid-induced cell death. Cell Death Dis 4:e949

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan D, Drysdale AJ, Lafourcade C, Pertwee RG, Platt B (2009) Cannabidiol targets mitochondria to regulate intracellular Ca2+ levels. J Neurosci 29:2053–2063

    Article  CAS  PubMed  Google Scholar 

  • Salazar M, Carracedo A, Salanueva IJ, Hernandez-Tiedra S, Lorente M, Egia A, Vazquez P, Blazquez C, Torres S, Garcia S, Nowak J, Fimia GM, Piacentini M, Cecconi F, Pandolfi PP, Gonzalez-Feria L, Iovanna JL, Guzman M, Boya P, Velasco G (2009) Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells. J Clin Invest 119:1359–1372

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sarfaraz S, Afaq F, Adhami VM, Malik A, Mukhtar H (2006) Cannabinoid receptor agonist-induced apoptosis of human prostate cancer cells LNCaP proceeds through sustained activation of ERK1/2 leading to G1 cell cycle arrest. J Biol Chem 281:39480–39491

    Article  CAS  PubMed  Google Scholar 

  • Sarfaraz S, Adhami VM, Syed DN, Afaq F, Mukhtar H (2008) Cannabinoids for cancer treatment: progress and promise. Cancer Res 68:339–342

    Article  CAS  PubMed  Google Scholar 

  • Sarker KP, Maruyama I (2003) Anandamide induces cell death independently of cannabinoid receptors or vanilloid receptor 1: possible involvement of lipid rafts. Cell Mol Life Sci 60:1200–1208

    CAS  PubMed  Google Scholar 

  • Scott KA, Dalgleish AG, Liu WM (2014) The combination of cannabidiol and Delta9-tetrahydrocannabinol enhances the anticancer effects of radiation in an orthotopic murine glioma model. Mol Cancer Ther 13:2955–2967

    Article  CAS  PubMed  Google Scholar 

  • Shrivastava A, Kuzontkoski PM, Groopman JE, Prasad A (2011) Cannabidiol induces programmed cell death in breast cancer cells by coordinating the cross-talk between apoptosis and autophagy. Mol Cancer Ther 10:1161–1172

    Article  CAS  PubMed  Google Scholar 

  • Singer E, Judkins J, Salomonis N, Matlaf L, Soteropoulos P, McAllister S, Soroceanu L (2015) Reactive oxygen species-mediated therapeutic response and resistance in glioblastoma. Cell Death Dis 6:e1601

    Article  CAS  PubMed  Google Scholar 

  • Solinas M, Massi P, Cantelmo AR, Cattaneo MG, Cammarota R, Bartolini D, Cinquina V, Valenti M, Vicentini LM, Noonan DM, Albini A, Parolaro D (2012) Cannabidiol inhibits angiogenesis by multiple mechanisms. Br J Pharmacol 167:1218–1231

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Soroceanu L, Murase R, Limbad C, Singer EL, Allison J, Adrados I, Kawamura R, Pakdel A, Fukuyo Y, Nguyen D, Khan S, Arauz R, Yount GL, Moore D, Desprez PY, McAllister SD (2013) Id-1 is a Key transcriptional regulator of glioblastoma aggressiveness and a novel therapeutic target. Cancer Res 73:1559–1569

  • Srivastava MD, Srivastava BI, Brouhard B (1998) Delta9 tetrahydrocannabinol and cannabidiol alter cytokine production by human immune cells. Immunopharmacology 40:179–185

    Article  CAS  PubMed  Google Scholar 

  • Sugiura T, Kondo S, Sukagawa A, Nakane S, Shinoda A, Itoh K, Yamashita A, Waku K (1995) 2-Arachidonoylglycerol: a possible cannabinoid receptor ligand in the brain. Biochem Biophys Res Commun 215:89–97

    Article  CAS  PubMed  Google Scholar 

  • Sui X, Chen R, Wang Z, Huang Z, Kong N, Zhang M, Han W, Lou F, Yang J, Zhang Q, Wang X, He C, Pan H (2013) Autophagy and chemotherapy resistance: a promising therapeutic target for cancer treatment. Cell Death Dis 4:e838

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Swarbrick A, Roy E, Allen T, Bishop JM (2008) Id1 cooperates with oncogenic Ras to induce metastatic mammary carcinoma by subversion of the cellular senescence response. Proc Natl Acad Sci U S A 105:5402–5407

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Timmerman LA, Holton T, Yuneva M, Louie RJ, Padro M, Daemen A, Hu M, Chan DA, Ethier SP, van’t Veer LJ, Polyak K, McCormick F, Gray JW (2013) Glutamine sensitivity analysis identifies the xCT antiporter as a common triple-negative breast tumor therapeutic target. Cancer Cell 24:450–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Torres S, Lorente M, Rodriguez-Fornes F, Hernandez-Tiedra S, Salazar M, Garcia-Taboada E, Barcia J, Guzman M, Velasco G (2011) A combined preclinical therapy of cannabinoids and temozolomide against glioma. Mol Cancer Ther 10:90–103

    Article  CAS  PubMed  Google Scholar 

  • Turkanis SA, Karler R (1975) Influence of anticonvulsant cannabinoids on posttetanic potentiation at isolated bullfrog ganglia. Life Sci 17:569–578

    Article  CAS  PubMed  Google Scholar 

  • Turner CE, Elsohly MA, Boeren EG (1980) Constituents of Cannabis sativa L. XVII. A review of the natural constituents. J Nat Prod 43:169–234

    Article  CAS  PubMed  Google Scholar 

  • Vaccani A, Massi P, Colombo A, Rubino T, Parolaro D (2005) Cannabidiol inhibits human glioma cell migration through a cannabinoid receptor-independent mechanism. Br J Pharmacol 144:1032–1036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Velasco G, Galve-Roperh I, Sanchez C, Blazquez C, Guzman M (2004) Hypothesis: cannabinoid therapy for the treatment of gliomas? Neuropharmacology 47:315–323

    Article  CAS  PubMed  Google Scholar 

  • Velasco G, Sanchez C, Guzman M (2012) Towards the use of cannabinoids as antitumour agents. Nat Rev Cancer 12:436–444

    Article  CAS  PubMed  Google Scholar 

  • Ward SJ, McAllister SD, Kawamura R, Murase R, Neelakantan H, Walker EA (2014) Cannabidiol inhibits paclitaxel-induced neuropathic pain through 5-HT(1A) receptors without diminishing nervous system function or chemotherapy efficacy. Br J Pharmacol 171:636–645

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wilson RI, Nicoll RA (2002) Endocannabinoid signaling in the brain. Science 296:678–682

    Article  CAS  PubMed  Google Scholar 

  • Wondrak GT (2009) Redox-directed cancer therapeutics: molecular mechanisms and opportunities. Antioxid Redox Signal 11:3013–3069

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yoshikawa M, Tsuchihashi K, Ishimoto T, Yae T, Motohara T, Sugihara E, Onishi N, Masuko T, Yoshizawa K, Kawashiri S, Mukai M, Asoda S, Kawana H, Nakagawa T, Saya H, Nagano O (2013) xCT inhibition depletes CD44v-expressing tumor cells that are resistant to EGFR-targeted therapy in head and neck squamous cell carcinoma. Cancer Res 73:1855–1866

    Article  CAS  PubMed  Google Scholar 

  • Zhu HJ, Wang JS, Markowitz JS, Donovan JL, Gibson BB, Gefroh HA, Devane CL (2006) Characterization of P-glycoprotein inhibition by major cannabinoids from marijuana. J Pharmacol Exp Ther 317:850–857

    Article  CAS  PubMed  Google Scholar 

  • Zuardi AW (2008) Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Rev Bras Psiquiatr 30:271–280

    Article  PubMed  Google Scholar 

Download references

Conflict of Interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean D. McAllister.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McAllister, S.D., Soroceanu, L. & Desprez, PY. The Antitumor Activity of Plant-Derived Non-Psychoactive Cannabinoids. J Neuroimmune Pharmacol 10, 255–267 (2015). https://doi.org/10.1007/s11481-015-9608-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-015-9608-y

Keywords

Navigation