Advertisement

Journal of Neuroimmune Pharmacology

, Volume 10, Issue 2, pp 356–363 | Cite as

Palmitoyl Serine: An Endogenous Neuroprotective Endocannabinoid-Like Entity After Traumatic Brain Injury

  • Aniv Mann
  • Reem Smoum
  • Victoria Trembovler
  • Alexander Alexandrovich
  • Aviva Breuer
  • Raphael Mechoulam
  • Esther ShohamiEmail author
ORIGINAL ARTICLE

Abstract

The endocannabinoid (eCB) system helps recovery following traumatic brain injury (TBI). Treatment with 2-arachidonoylglycerol (2-AG), a cerebral eCB ligand, was found to ameliorate the secondary damage. Interestingly, the fatty acid amino acid amide (FAAA) N-arachidonoyl-L-serine (AraS) exerts similar eCB dependent neuroprotective. The present study aimed to investigate the effects of the FAAA palmitoyl-serine (PalmS) following TBI. We utilized the TBI model in mice to examine the therapeutic potential of PalmS, injected 1 h following closed head injury (CHI). We followed the functional recovery of the injured mice for 28 days post-CHI, and evaluated cognitive and motor function, lesion volume, cytokines levels, molecular signaling, and infarct volume at different time points after CHI. PalmS treatment led to a significant improvement of the neurobehavioral outcome of the treated mice, compared with vehicle. This effect was attenuated in the presence of eCBR antagonists and in CB2−/− mice, compared to controls. Unexpectedly, treatment with PalmS did not affect edema and lesion volume, TNFα and IL1β levels, anti-apoptotic mechanisms, nor did it exert improvement in cognitive and motor function. Finally, co-administration of PalmS, AraS and 2-AG, did not enhance the effect of the individual drugs. We suggest that the neuroprotective action of PalmS is mediated by indirect activation of the eCB receptors following TBI. One such mechanism may involve receptor palmitoylation which has been reported to result in structural stabilization of the receptors and to an increase in their activity. Further research is required in order to establish this assumption.

Keywords

TBI CHI Endocannabinoid FAAA PalmS 2-AG 

Abbreviations

2-AG

2-arachidonoyl glycerol

AraS

N-arachidonoyl serine

CHI

Closed head injury

eCB

Endocannabinoid

FAAA

Fatty acid amino acid amides

NF-kappaB

Nuclear factor kappaB

PalmS

Palmitoyl serine

TBI

Traumatic brain injury

Notes

Acknowledgments

This study was supported by a NIH grant DA-9789; RM thanks the Kessler Foundation for financial support.

Conflict of Interest

The authors declare no conflict of interests.

References

  1. Aguado T, Monory K, Palazuelos J, Stella N, Cravatt B, Lutz B et al (2005) The endocannabinoid system drives neural progenitor proliferation. FASEB J 19(12):1704–1706PubMedGoogle Scholar
  2. Beauchamp K, Mutlak H, Smith WR, Shohami E, Stahel PF (2008) Pharmacology of traumatic brain injury: where is the “golden bullet”? Mol Med 14:731–740PubMedCentralPubMedCrossRefGoogle Scholar
  3. Beni-Adani L, Gozes I, Cohen Y, Assaf Y, Steingart RA, Brenneman DE et al (2001) A peptide derived from activity-dependent neuroprotective protein (ADNP) ameliorates injury response in closed head injury in mice. J Pharmacol Exp Ther 296(1):57–63PubMedGoogle Scholar
  4. Ben-Shabat S, Fride E, Sheskin T, Tamiri T, Rhee MH, Vogel Z et al (1998) An entourage effect: inactive endogenous fatty acid glycerol esters enhance 2-arachidonoyl-glycerol cannabinoid activity. Eur J Pharmacol 353(1):23–31PubMedCrossRefGoogle Scholar
  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254PubMedCrossRefGoogle Scholar
  6. Chen Y, Constantini S, Trembovler V, Weinstock M, Shohami E (1996) An experimental model of closed head injury in mice: pathophysiology, histopathology, and cognitive deficits. J Neurotrauma 13(10):557–568PubMedGoogle Scholar
  7. Clark RS, Kochanek PM, Schwarz MA, Schiding JK, Turner DS, Chen M et al (1996) Inducible nitric oxide synthase expression in cerebrovascular smooth muscle and neutrophils after traumatic brain injury in immature rats. Pediatr Res 39(5):784–790PubMedCrossRefGoogle Scholar
  8. Cohen-Yeshurun A, Trembovler V, Alexandrovich A, Ryberg E, Greasley PJ, Mechoulam R et al (2011) N-arachidonoyl-L-serine is neuroprotective after traumatic brain injury by reducing apoptosis. J Cereb Blood Flow Metab 31:1768–1777PubMedCentralPubMedCrossRefGoogle Scholar
  9. Dellu F, Mayo W, Cherkaoui J, Le Moal M, Simon H (1992) A two-trial memory task with automated recording: study in young and aged rats. Brain Res 588(1):132–139PubMedCrossRefGoogle Scholar
  10. el-Husseini A-D, Bredt DS (2002) Protein palmitoylation: a regulator of neuronal development and function. Nat Rev Neurosci 3(10):791–802CrossRefGoogle Scholar
  11. Flierl MA, Stahel PF, Beauchamp KM, Morgan SJ, Smith WR, Shohami E (2009) Mouse closed head injury model induced by a weight-drop device. Nat Protoc 4(9):1328–1337PubMedCrossRefGoogle Scholar
  12. Gallily R, Breuer A, Mechoulam R (2000) 2-Arachidonylglycerol, an endogenous cannabinoid, inhibits tumor necrosis factor-alpha production in murine macrophages, and in mice. Eur J Pharmacol 406(1):R5–R7PubMedCrossRefGoogle Scholar
  13. García MC, Adler-Graschinsky E, Celuch SM (2009) Enhancement of the hypotensive effects of intrathecally injected endocannabinoids by the entourage compound palmitoylethanolamide. Eur J Pharmacol 610(1–3):75–80CrossRefGoogle Scholar
  14. Hansen HS, Moesgaard B, Petersen G, Hansen HH (2002) Putative neuroprotective actions of N-acyl-ethanolamines. Pharmacol Ther 95:119–126Google Scholar
  15. Hanus L, Shohami E, Bab I, Mechoulam R (2014) N-Acyl amino acids and their impact on biological processes. Biofactors 40:381–388PubMedCrossRefGoogle Scholar
  16. Javadi-Paydar M, Rayatnia F, Fakhraei N, Zakeri M, Mirazi N, Norouzi A et al (2011) Atorvastatin improved scopolamine-induced impairment in memory acquisition in mice: involvement of nitric oxide. Brain Res 1386:89–99PubMedCrossRefGoogle Scholar
  17. Ker K, Blackhall K (2008) Beta-2 receptor antagonists for acute traumatic brain injury. Cochrane Database Syst Rev 23(1):CD006686Google Scholar
  18. Kuhla A, Lange S, Holzmann C, Maass F, Petersen J, Vollmar B et al (2013) Lifelong caloric restriction increases working memory in mice. PLoS One 8(7):e68778PubMedCentralPubMedCrossRefGoogle Scholar
  19. Leker RR, Shohami E (2002) Cerebral ischemia and trauma-different etiologies yet similar mechanisms: neuroprotective opportunities. Brain Res Brain Res Rev 39:55–73PubMedCrossRefGoogle Scholar
  20. Lowther J, Naismith JH, Dunn TM, Campopiano DJ (2012) Structural, mechanistic and regulatory studies of serine palmitoyltransferase. Biochem Soc Trans 40(3):547–554PubMedCrossRefGoogle Scholar
  21. Maas AI, Stocchetti N, Bullock R (2008) Moderate and severe traumatic brain injury in adults. Lancet Neurol 7:728–741PubMedCrossRefGoogle Scholar
  22. Mechoulam R, Parker L (2013) Towards a better cannabis drug. Br J Pharmacol 170(7):1363–1364PubMedCentralPubMedCrossRefGoogle Scholar
  23. Mechoulam R, Panikashvili D, Shohami E (2002) Cannabinoids and brain injury: therapeutic implications. Trends Mol Med 8:58–61PubMedCrossRefGoogle Scholar
  24. Milman G, Maor Y, Abu-Lafi S, Horowitz M, Gallily R, Batkai S et al (2006) N-arachidonoyl L-serine, an endocannabinoid-like brain constituent with vasodilatory properties. Proc Natl Acad Sci U S A 103(7):2428–2433PubMedCentralPubMedCrossRefGoogle Scholar
  25. Mohan ML, Vasudevan NT, Gupta MK, Martelli EE, Naga Prasad SV (2012) G-protein coupled receptor resensitization-appreciating the balancing act of receptor function. Curr Mol Pharmacol. [Epub ahead of print]Google Scholar
  26. Oddi S, Dainese E, Sandiford S, Fezza F, Lanuti M, Chiurchiù V et al (2012) Effects of palmitoylation of Cys(415) in helix 8 of the CB(1) cannabinoid receptor on membrane localization and signalling. Br J Pharmacol 165(8):2635–2651PubMedCentralPubMedCrossRefGoogle Scholar
  27. Palazuelos J, Aguado T, Egia A, Mechoulam R, Guzmán M, Galve-Roperh I (2006) Non-psychoactive CB2 cannabinoid agonists stimulate neural progenitor proliferation. FASEB J 20(13):2405–2407PubMedCrossRefGoogle Scholar
  28. Panikashvili D, Simeonidou C, Ben-Shabat S, Hanus L, Breuer A, Mechoulam R et al (2001) An endogenous cannabinoid (2-AG) is neuroprotective after brain injury. Nature 413:527–531Google Scholar
  29. Panikashvili D, Mechoulam R, Beni SM, Alexandrovich A, Shohami E (2005) CB1 cannabinoid receptors are involved in neuroprotection via NF-kappa B inhibition. J Cereb Blood Flow Metab 25(4):477–484PubMedCrossRefGoogle Scholar
  30. Panikashvili D, Shein NA, Mechoulam R, Trembovler V, Kohen R, Alexandrovich A et al (2006) The endocannabinoid 2-AG protects the blood–brain barrier after closed head injury and inhibits mRNA expression of proinflammatory cytokines. Neurobiol Dis 22:257–264PubMedCrossRefGoogle Scholar
  31. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP, Williams KP et al (1998) Identification of a palmitic acid-modified form of human Sonic hedgehog. J Biol Chem 273(22):14037–14045PubMedCrossRefGoogle Scholar
  32. Povlishock JT, Katz DI (2005) Update of neuropathology and neurological recovery after traumatic brain injury. J Head Trauma Rehabil 20(1):76–94PubMedCrossRefGoogle Scholar
  33. Przybyłkowski A, Gromadzka G, Wawer A, Bulska E, Jabłonka-Salach K, Grygorowicz T et al (2013) Neurochemical and behavioral characteristics of toxic milk mice: an animal model of Wilson’s disease. Neurochem Res 38(10):2037–2045PubMedCentralPubMedCrossRefGoogle Scholar
  34. Smoum R, Bar A, Tan B, Milman G, Attar-Namdar M, Ofek O et al (2010) Oleoyl serine, an endogenous N-acyl amide, modulates bone remodeling and mass. Proc Natl Acad Sci U S A 107(41):17710–17715PubMedCentralPubMedCrossRefGoogle Scholar
  35. Swanson RA, Morton MT, Tsao-Wu G, Savalos RA, Davidson C, Sharp FR (1990) A semiautomated method for measuring brain infarct volume. J Cereb Blood Flow Metab 10(2):290–293PubMedCrossRefGoogle Scholar
  36. Tan B, O’Dell DK, Yu YW, Monn MF, Hughes HV, Burstein S et al (2010) Identification of endogenous acyl amino acids based on a targeted lipidomics approach. J Lipid Res 15:112–119CrossRefGoogle Scholar
  37. Tsenter J, Beni-Adani L, Assaf Y, Alexandrovich AG, Trembovler V, Shohami E (2008) Dynamic changes in the recovery after traumatic brain injury in mice: effect of injury severity on T2-weighted MRI abnormalities, and motor and cognitive functions. J Neurotrauma 25(4):324–333PubMedCrossRefGoogle Scholar
  38. Tsutsumi R, Fukata Y, Fukata M (2008) Protein palmitoylating enzymes. Seikagaku 80(12):1119–1123PubMedGoogle Scholar
  39. Van der Stelt M, Veldhuis WB, Maccarrone M, Bar PR, Nicolay K, Veldnik DA, Di Marzo V, Vliegenthart JF (2002) Acute neuronal injury, excitotoxicity, and the endocannabonoid system. Mol Neurobiol 26:317–346PubMedCrossRefGoogle Scholar
  40. Wagner AK, Postal BA, Darrah SD, Chen X, Khan AS (2007) Deficits in novelty exploration after controlled cortical impact. J Neurotrauma 24(8):1308–1320PubMedCrossRefGoogle Scholar
  41. Weiss L, Zeira M, Reich S, Slavin S, Raz I, Mechoulam R et al (2008) Cannabidiol arrests onset of autoimmune diabetes in NOD mice. Neuropharmacology 54(1):244–249PubMedCentralPubMedCrossRefGoogle Scholar
  42. Zhang X, Chen Y, Jenkins LW, Kochanek PM, Clark RSB (2005) Bench-to-bedside review: apoptosis/programmed cell death triggered by traumatic brain injury. Crit Care 9:66–75PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Aniv Mann
    • 1
  • Reem Smoum
    • 1
  • Victoria Trembovler
    • 1
  • Alexander Alexandrovich
    • 1
  • Aviva Breuer
    • 1
  • Raphael Mechoulam
    • 1
  • Esther Shohami
    • 1
    Email author
  1. 1.Institute for Drug Research, Faculty of MedicineHebrew University of JerusalemJerusalemIsrael

Personalised recommendations