Skip to main content

Advertisement

Log in

Ligand-Gated Purinergic Receptors Regulate HIV-1 Tat and Morphine Related Neurotoxicity in Primary Mouse Striatal Neuron-Glia Co-Cultures

  • ORIGINAL ARTICLE
  • Published:
Journal of Neuroimmune Pharmacology Aims and scope Submit manuscript

Abstract

Emerging evidence suggests that opioid drugs, such as morphine and heroin, can exacerbate neuroAIDS. Microglia are the principal neuroimmune effectors thought to be responsible for neuron damage in HIV-infected individuals, and evidence suggests that opioid drugs acting via μ opioid receptors in microglia aggravate the neuropathophysiological effects of HIV. Key aspects of microglial function are regulated by the P2X family of ATP activated ligand-gated ion channels. In addition, opioid-dependent microglial activation has been reported to be mediated through P2X4 signaling, which prompted us to investigate whether the cation-permeable P2X receptors contribute to the neurotoxic effects of HIV and morphine. To address this question, neuron survival, as well as other endpoints including changes in dendritic length, extracellular ATP levels, and intracellular calcium levels, were assayed in primary neuron-glia co-cultures from mouse striatum. Treatment with TNP-ATP, a non-selective P2X antagonist, prevented the neurotoxic effects of exposure to morphine and/or HIV Tat, or ATP alone, suggesting P2X receptors mediate the neurotoxic effects of these insults in striatal neurons. Although P2X7, and perhaps P2X1, receptor activation decreases neuron survival, neither P2X1, P2X3, nor P2X7 selective receptor antagonists prevented Tat and/or morphine-induced neurotoxicity. These and other experiments indicate the P2X receptor family contributes to Tat- and morphine- related neuronal injury, and provide circumstantial evidence implicating P2X4 receptors in particular. Our findings reveal that members of the P2X receptor family, especially P2X4, may be novel therapeutic targets for restricting the synaptodendritic injury and neurodegeneration that accompanies neuroAIDS and opiate abuse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Agboh KC, Powell AJ, Evans RJ (2009) Characterisation of ATP analogues to cross-link and label P2X receptors. Neuropharmacology 56:230–236

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amadio S, Montilli C, Picconi B, Calabresi P, Volonté C (2007) Mapping P2X and P2Y receptor proteins in striatum and substantia nigra: an immunohistological study. Purinergic Signal 3:389–398

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Antinori A, Arendt G, Becker JT, Brew BJ, Byrd DA, Cherner M et al (2007) Updated research nosology for HIV-associated neurocognitive disorders. Neurology 69:1789–1799

    Article  CAS  PubMed  Google Scholar 

  • Apolloni S, Montilli C, Finocchi P, Amadio S (2009) Membrane compartments and purinergic signalling: P2X receptors in neurodegenerative and neuroinflammatory events. FEBS J 276:354–364

    Article  CAS  PubMed  Google Scholar 

  • Ashour F, Deuchars J (2004) Electron microscopic localisation of P2X4 receptor subunit immunoreactivity to pre- and post-synaptic neuronal elements and glial processes in the dorsal vagal complex of the rat. Brain Res 1026:44–55

    Google Scholar 

  • Bai H-Y, Li A-P (2013) P2X7 receptors in cerebral ischemia. Neurosci Bull 29:390–398

    Google Scholar 

  • Baxter AW, Choi SJ, Sim JA, North RA (2011) Role of P2X4 receptors in synaptic strengthening in mouse CA1 hippocampal neurons. Eur J Neurosci 34:213–220

    Article  PubMed Central  PubMed  Google Scholar 

  • Bell JE, Arango JC, Robertson R, Brettle RP, Leen C, Simmonds P (2002) HIV and drug misuse in the Edinburgh cohort. J Acquir Immune Defic Syndr 31(Suppl 2):S35–S42

    Article  CAS  PubMed  Google Scholar 

  • Bonavia R, Bajetto A, Barbero S, Albini A, Noonan DM, Schettini G (2001) HIV-1 Tat causes apoptotic death and calcium homeostasis alterations in rat neurons. Biochem Biophys Res Commun 288:301–308

    Article  CAS  PubMed  Google Scholar 

  • Brône B, Moechars D, Marrannes R, Mercken M, Meert T (2007) P2X currents in peritoneal macrophages of wild type and P2X4 -/- mice. Immunol Lett 113:83–89

    Google Scholar 

  • Buch SK, Khurdayan VK, Lutz SE, Knapp PE, El-Hage N, Hauser KF (2007) Glial-restricted precursors: patterns of expression of opioid receptors and relationship to human immunodeficiency virus-1 Tat and morphine susceptibility in vitro. Neuroscience 146:1546–1554

    Article  CAS  PubMed  Google Scholar 

  • Buch S, Yao H, Guo M, Mori T, Su T-P, Wang J (2011) Cocaine and HIV-1 interplay: molecular mechanisms of action and addiction. J NeuroImmune Pharmacol 6:503–515

    Article  PubMed Central  PubMed  Google Scholar 

  • Burnstock G, Kennedy C (2011) P2X receptors in health and disease. Adv Pharmacol 61:333–372

    Article  CAS  PubMed  Google Scholar 

  • Byrd DA, Fellows RP, Morgello S, Franklin D, Heaton RK, Deutsch R et al (2011) Neurocognitive impact of substance use in HIV infection. J Acquir Immune Defic Syndr 58:154–162

    Article  PubMed Central  PubMed  Google Scholar 

  • Centers for Disease Control and Prevention (2012) HIV surveillance in injection drug users (through 2011). Division of HIV/AIDS prevention. http://www.cdc.gov/hiv/library/slideSets/index.html

  • Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS (2011) Activation and regulation of purinergic P2X receptor channels. Pharmacol Rev 63:641–683

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Collo G, North RA, Kawashima E, Merlo-Pich E, Neidhart S, Surprenant A et al (1996) Cloning of P2X5 and P2X6 receptors and the distribution and properties of an extended family of ATP-gated ion channels. J Neurosci 16:2495–2507

    Google Scholar 

  • Donahoe RM, Vlahov D (1998) Opiates as potential cofactors in progression of HIV-1 infections to AIDS. J Neuroimmunol 83:77–87

    Article  CAS  PubMed  Google Scholar 

  • Dunn PM, Liu M, Zhong Y, King BF, Burnstock G (2000) Diinosine pentaphosphate: an antagonist which discriminates between recombinant P2X3 and P2X2/3 receptors and between two P2X receptors in rat sensory neurones. Br J Pharmacol 130:1378–1384

    Google Scholar 

  • El-Ajouz S, Ray D, Allsopp RC, Evans RJ (2011) Molecular basis of selective antagonism of the P2X1 receptor for ATP by NF449 and suramin: contribution of basic amino acids in the cysteine-rich loop. Br J Pharmacol 165:390–400

    Article  Google Scholar 

  • El-Hage N, Gurwell JA, Singh IN, Knapp PE, Nath A, Hauser KF (2005) Synergistic increases in intracellular Ca2+, and the release of MCP-1, RANTES, and IL-6 by astrocytes treated with opiates and HIV-1 Tat. Glia 50:91–106

    Google Scholar 

  • Eugenin EA, King JE, Nath A, Calderon TM, Zukin RS, Bennett MVL et al (2007) HIV-tat induces formation of an LRP-PSD-95- NMDAR-nNOS complex that promotes apoptosis in neurons and astrocytes. Proc Natl Acad Sci U S A 104:3438–3443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ferrini F, Trang T, Mattioli T-AM, Laffray S, Del’Guidice T, Lorenzo L-E et al (2013) Morphine hyperalgesia gated through microglia-mediated disruption of neuronal Cl homeostasis. Nat Neurosci 16:183–192

    Google Scholar 

  • Garcia-Guzman M, Soto F, Gomez-Hernandez JM, Lund PE, Stühmer W (1997) Characterization of recombinant human P2X4 receptor reveals pharmacological differences to the rat homologue. Mol Pharmacol 51:109–118

    Google Scholar 

  • González-Scarano F, Martín-García J (2005) The neuropathogenesis of AIDS. Nat Rev Immunol 5:69–81

    Article  PubMed  Google Scholar 

  • Gordon GRJ, Baimoukhametova DV, Hewitt SA, Rajapaksha WRAKJS, Fisher TE, Bains JS (2005) Norepinephrine triggers release of glial ATP to increase postsynaptic efficacy. Nat Neurosci 8:1078–1086

    Article  CAS  PubMed  Google Scholar 

  • Guo C, Masin M, Qureshi OS, Murrell-Lagnado RD (2007) Evidence for functional P2X4/P2X7 heteromeric receptors. Mol Pharmacol 72:1447–1456

    Google Scholar 

  • Harezlak J, Buchthal S, Taylor M, Schifitto G, Zhong J, Daar E et al (2011) Persistence of HIV-associated cognitive impairment, inflammation, and neuronal injury in era of highly active antiretroviral treatment. AIDS 25:625–633

    Article  CAS  PubMed  Google Scholar 

  • Hauser KF, McLaughlin PJ, Zagon IS (1989) Endogenous opioid systems and the regulation of dendritic growth and spine formation. J Comp Neurol 281:13–22

    Article  CAS  PubMed  Google Scholar 

  • Hauser KF, El-Hage N, Buch S, Nath A, Tyor WR, Bruce-Keller AJ et al (2006) Impact of opiate-HIV-1 interactions on neurotoxic signaling. J NeuroImmune Pharmacol 1:98–105

    Article  PubMed  Google Scholar 

  • Hauser KF, Fitting S, Dever SM, Podhaizer EM, Knapp PE (2012) Opiate drug use and the pathophysiology of neuroAIDS. Curr HIV Res 10:435–452

    Google Scholar 

  • Hazleton JE, Berman JW, Eugenin EA (2012) Purinergic receptors are required for HIV-1 infection of primary human macrophages. J Immunol 188:4125–4126

    Article  Google Scholar 

  • Hervás C, Pérez-Sen R, Miras-Portugal MT (2005) Presence of diverse functional P2X receptors in rat cerebellar synaptic terminals. Biochem Pharmacol 70:770–785

    Article  PubMed  Google Scholar 

  • Horvath RJ, DeLeo JA (2009) Morphine enhances microglial migration through modulation of P2X4 receptor signaling. J Neurosci 29:998–1005

    Google Scholar 

  • Horvath RJ, Romero-Sandoval EA, De Leo JA (2010) Inhibition of microglial P2X4 receptors attenuates morphine tolerance, Iba1, GFAP and mu opioid receptor protein expression while enhancing perivascular microglial ED2. Pain 150:401–413

    Google Scholar 

  • Hu S, Sheng WS, Lokensgard JR, Peterson PK (2002) Morphine induces apoptosis of human microglia and neurons. Neuropharmacology 42:829–836

    Article  CAS  PubMed  Google Scholar 

  • Iglesias M, Segura MF, Comella JX, Olmos G (2003) Mu-opioid receptor activation prevents apoptosis following serum withdrawal in differentiated SH-SY5Y cells and cortical neurons via phosphatidylinositol 3-kinase. Neuropharmacology 44:482–492

    Article  CAS  PubMed  Google Scholar 

  • Jacobson KA, Jarvis MF, Williams M (2002) Purine and pyrimidine (P2) receptors as drug targets. J Med Chem 45:4057–4090

    Article  CAS  PubMed  Google Scholar 

  • Jarvis MF, Burgard EC, McGaraughty S, Honore P, Lynch K, Brennan TJ et al (2002) A-317491, a novel potent and selective non-nucleotide antagonist of P2X3 and P2X2/3 receptors, reduces chronic inflammatory and neuropathic pain in the rat. Proc Natl Acad Sci U S A 99:17179–17184

    Google Scholar 

  • Kraft-Terry SD, Stothert AR, Buch S, Gendelman HE (2010) HIV-1 neuroimmunity in the era of antiretroviral therapy. Neurobiol Dis 37:542–548

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kukley M, Barden JA, Steinhäuser C, Jabs R (2001) Distribution of P2X receptors on astrocytes in juvenile rat hippocampus. Glia 36:11–21

    Article  CAS  PubMed  Google Scholar 

  • Kumar R, Torres C, Yamamura Y, Rodriguez I, Martinez M, Staprans S et al (2004) Modulation by morphine of viral set point in rhesus macaques infected with simian immunodeficiency virus and simian-human immunodeficiency virus. J Virol 78:11425–11428

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lê KT, Babinski K, Séguéla P (1998) Central P2X4 and P2X6 channel subunits coassemble into a novel heteromeric ATP receptor. J Neurosci 18:7152–7159

    Google Scholar 

  • Li W, Huang Y, Reid R, Steiner J, Malpica-Llanos T, Darden TA et al (2008) NMDA receptor activation by HIV-Tat protein is clade dependent. J Neurosci 28:12190–12198

    Article  CAS  PubMed  Google Scholar 

  • Lim YJ, Zheng S, Zuo Z (2004) Morphine preconditions Purkinje cells against cell death under in vitro simulated ischemia-reperfusion conditions. Anesthesiology 100:562–568

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Jones M, Hingtgen CM, Bu G, Laribee N, Tanzi RE et al (2000) Uptake of HIV-1 tat protein mediated by low-density lipoprotein receptor-related protein disrupts the neuronal metabolic balance of the receptor ligands. Nat Med 6:1380–1387

    Article  CAS  PubMed  Google Scholar 

  • Lynch KJ, Touma E, Niforatos W, Kage KL, Burgard EC, van Biesen T et al (1999) Molecular and functional characterization of human P2X2 receptors. Mol Pharmacol 56:1171–1181

    Google Scholar 

  • Ma B, Ruan H-Z, Cockayne DA, Ford APDW, Burnstock G, Dunn PM (2004) Identification of P2X receptors in cultured mouse and rat parasympathetic otic ganglion neurones including P2X knockout studies. Neuropharmacology 46:1039–1048

    Article  CAS  PubMed  Google Scholar 

  • Ma W, Hui H, Pelegrin P, Surprenant A (2009) Pharmacological characterization of Pannexin-1 currents expressed in mammalian cells. J Pharmacol Exp Ther 328:409–418

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • McArthur JC, Steiner J, Sacktor N, Nath A (2010) Human immunodeficiency virus-associated neurocognitive disorders: mind the gap. Ann Neurol 67:699–714

    CAS  PubMed  Google Scholar 

  • Meyer VJ, Rubin LH, Martin E, Weber KM, Cohen MH, Golub ET et al (2013) HIV and recent illicit drug use interact to affect verbal memory in women. J Acquir Immune Defic Syndr 63:67–76

    Article  CAS  PubMed  Google Scholar 

  • Mocchetti I, Bachis A, Avdoshina V (2012) Neurotoxicity of human immunodeficiency virus-1: viral proteins and axonal transport. Neurotox Res 21:79–89

    Article  CAS  PubMed  Google Scholar 

  • Ohsawa K, Irino Y, Nakamura Y, Akazawa C, Inoue K, Kohsaka S (2007) Involvement of P2X4 and P2Y12 receptors in ATP-induced microglial chemotaxis. Glia 55:604–616

    Google Scholar 

  • Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158:137–148

    Article  CAS  PubMed  Google Scholar 

  • Persidsky Y, Gendelman HE (2003) Mononuclear phagocyte immunity and the neuropathogenesis of HIV-1 infection. J Leukoc Biol 74:691–701

    Article  CAS  PubMed  Google Scholar 

  • Podhaizer EM, Zou S, Fitting S, Samano KL, El-Hage N, Knapp PE et al (2012) Morphine and gp120 toxic interactions in striatal neurons are dependent on HIV-1 strain. J NeuroImmune Pharmacol 7:877–891

    Article  PubMed Central  PubMed  Google Scholar 

  • Raouf R, Chabot-Doré A-J, Ase AR, Blais D, Séguéla P (2007) Differential regulation of microglial P2X4 and P2X7 ATP receptors following LPS-induced activation. Neuropharmacology 53:496–504

    Google Scholar 

  • Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    Google Scholar 

  • Rettinger J, Schmalzing G (2004) Desensitization masks nanomolar potency of ATP for the P2X1 receptor. J Biol Chem 279:6426–6433

    Google Scholar 

  • Singh IN, El-Hage N, Campbell ME, Lutz SE, Knapp PE, Nath A et al (2005) Differential involvement of p38 and JNK MAP kinases in HIV-1 Tat and gp120-induced apoptosis and neurite degeneration in striatal neurons. Neuroscience 135:781–790

    Article  CAS  PubMed  Google Scholar 

  • Solini A, Santini E, Chimenti D, Chiozzi P, Pratesi F, Cuccato S et al (2007) Multiple P2X receptors are involved in the modulation of apoptosis in human mesangial cells: evidence for a role of P2X4. Am J Physiol Renal Physiol 292:F1537–F1547

    Google Scholar 

  • Suzuki M, El-Hage N, Zou S, Hahn YK, Sorrell ME, Sturgill JL et al (2011) Fractalkine/CX3CL1 protects striatal neurons from synergistic morphine and HIV-1 Tat-induced dendritic losses and death. Mol Neurodegener 6:78

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tai Y-H, Cheng P-Y, Tsai R-Y, Chen Y-F, Wong C-S (2010) Purinergic P2X receptor regulates N-methyl-D-aspartate receptor expression and synaptic excitatory amino acid concentration in morphine-tolerant rats. Anesthesiology 113:1163–1175

    Article  CAS  PubMed  Google Scholar 

  • Tovar-y-Romo LB, Kolson DL, Bandaru V, Drewes JL, Graham DR, Haughey NJ (2013) Adenosine triphosphate released from HIV-infected macrophages regulates glutamatergic tone and dendritic spine density on neurons. J NeuroImmune Pharmacol 8:998–1009

    Google Scholar 

  • Tsuda M, Shigemoto-Mogami Y, Koizumi S, Mizokoshi A, Kohsaka S, Salter MW et al (2003) P2X4 receptors induced in spinal microglia gate tactile allodynia after nerve injury. Nature 424:778–783

    Google Scholar 

  • Ulmann L, Hatcher JP, Hughes JP, Chaumont S, Green PJ, Conquet F et al (2008) Up-regulation of P2X4 receptors in spinal microglia after peripheral nerve injury mediates BDNF release and neuropathic pain. J Neurosci 28:11263–11268

    Google Scholar 

  • Valdez-Morales E, Guerrero-Alba R, Liñán-Rico A, Espinosa-Luna R, Zarazua-Guzman S, Miranda-Morales M et al (2011) P2X7 receptors contribute to the currents induced by ATP in guinea pig intestinal myenteric neurons. Eur J Pharmacol 668:366–372

    Google Scholar 

  • Virginio C, Robertson G, Surprenant A, North RA (1998) Trinitrophenyl-substituted nucleotides are potent antagonists selective for P2X1, P2X3, and heteromeric P2X2/3 receptors. Mol Pharmacol 53:969–973

    Google Scholar 

  • Young MT, Pelegrin P, Surprenant A (2007) Amino acid residues in the P2X7 receptor that mediate differential sensitivity to ATP and BzATP. Mol Pharmacol 71:92–100

    Google Scholar 

  • Zhou D, Chen M-L, Zhang Y-Q, Zhao Z-Q (2010) Involvement of spinal microglial P2X7 receptor in generation of tolerance to morphine analgesia in rats. J Neurosci 30:8042–8047

    Google Scholar 

  • Zou S, Fitting S, Hahn YK, Welch SP, El-Hage N, Hauser KF et al (2011) Morphine potentiates neurodegenerative effects of HIV-1 Tat through actions at μ-opioid receptor-expressing glia. Brain 134:3616–3631

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Pamela E. Knapp for reviewing the manuscript. We gratefully acknowledge the support of the National Institutes of Health (NIH)-National Institute on Drug Abuse grants T32 DA007027, R01 DA018633 and K02 DA027374.

Conflict of Interest

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kurt F. Hauser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sorrell, M.E., Hauser, K.F. Ligand-Gated Purinergic Receptors Regulate HIV-1 Tat and Morphine Related Neurotoxicity in Primary Mouse Striatal Neuron-Glia Co-Cultures. J Neuroimmune Pharmacol 9, 233–244 (2014). https://doi.org/10.1007/s11481-013-9507-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11481-013-9507-z

Keywords

Navigation