Advertisement

Journal of Neuroimmune Pharmacology

, Volume 5, Issue 3, pp 469–478 | Cite as

Mechanism of Neuroinflammation: Enhanced Cytotoxicity and IL-17 Production via CD46 Binding

  • Karen Yao
  • Jhanelle Graham
  • Yoshimi Akahata
  • Unsong Oh
  • Steven JacobsonEmail author
Original Article

Abstract

The membrane co-factor protein CD46 is the cellular receptor for a number of pathogens including the human herpesvirus 6 (HHV-6). In addition to its function as an inhibitory complement receptor, engagement of CD46 in the context of T-cell receptor (TCR) signaling influences T-cell activation. Simultaneous cross-linking of the CD3/CD46 molecules led to differentiation of a unique population of CD4+ T-cell subset characterized by enhanced expressions of IFN-γ, IL-10, granzyme B, adhesion molecule MAdCAM-1 (alpha-4-beta-7), surface-bound cytokine LIGHT, and chemokine receptor CCR9. Multiple sclerosis is a chronic inflammatory neurodegenerative disorder of the central nervous system (CNS) with unknown etiology. The HHV-6 is a candidate pathogen in MS and uses the CD46 molecule as its receptor. We hypothesize that binding of the HHV-6 glycoprotein to CD46 may trigger a pro-inflammatory response that could contribute to CNS tissue damage. To address this question, we examined immunological parameters such as proliferation, cytokine production and cytotoxic functions in CD4+ T cells of healthy individuals and MS patients following CD3/CD46 co-engagement by using anti-CD3 and anti-CD46 monoclonal antibodies as surrogates to mimic T-cell receptor and CD46 signaling. Our results demonstrated that CD3/CD46 cross-linking induced expression of IL-1β and IL-17A in multiple sclerosis patient T cells. Additionally, increase in transient surface expression of lysosomal associated protein CD107a suggested enhanced CD4+ T-cell cytotoxic functions following CD3/CD46 co-stimulation. Collectively, this study demonstrated evidence to suggest a potential mechanism of virus-induced neuroinflammation that may be involved in MS disease pathogenesis.

Keywords

CD46 HHV-6 IL-17 multiple sclerosis 

References

  1. Ahlqvist J, Fotheringham J, Akhyani N, Yao K, Fogdell-Hahn A, Jacobson S (2005) Differential tropism of human herpesvirus 6 (HHV-6) variants and induction of latency by HHV-6A in oligodendrocytes. J Neurovirol 11:384–394CrossRefPubMedGoogle Scholar
  2. Alford SK, Longmore GD, Stenson WF, Kemper C (2008) CD46-induced immunomodulatory CD4+ T cells express the adhesion molecule and chemokine receptor pattern of intestinal T cells. J Immunol 181:2544–2555PubMedGoogle Scholar
  3. Argaw AT, Zhang Y, Snyder BJ, Zhao ML, Kopp N, Lee SC, Raine CS, Brosnan CF, John GR (2006) IL-1beta regulates blood-brain barrier permeability via reactivation of the hypoxia-angiogenesis program. J Immunol 177:5574–5584PubMedGoogle Scholar
  4. Astier AL (2008) T-cell regulation by CD46 and its relevance in multiple sclerosis. Immunology 124:149–154CrossRefPubMedGoogle Scholar
  5. Astier A, Trescol-Biemont MC, Azocar O, Lamouille B, Rabourdin-Combe C (2000) Cutting edge: CD46, a new costimulatory molecule for T cells, that induces p120CBL and LAT phosphorylation. J Immunol 164:6091–6095PubMedGoogle Scholar
  6. Astier AL, Meiffren G, Freeman S, Hafler DA (2006) Alterations in CD46-mediated Tr1 regulatory T cells in patients with multiple sclerosis. J Clin Invest 116:3252–3257CrossRefPubMedGoogle Scholar
  7. Awasthi A, Riol-Blanco L, Jager A, Korn T, Pot C, Galileos G, Bettelli E, Kuchroo VK, Oukka M (2009) Cutting edge: IL-23 receptor gfp reporter mice reveal distinct populations of IL-17-producing cells. J Immunol 182:5904–5908CrossRefPubMedGoogle Scholar
  8. Barchet W, Price JD, Cella M, Colonna M, MacMillan SK, Cobb JP, Thompson PA, Murphy KM, Atkinson JP, Kemper C (2006) Complement-induced regulatory T cells suppress T-cell responses but allow for dendritic-cell maturation. Blood 107:1497–1504CrossRefPubMedGoogle Scholar
  9. Ben-Sasson SZ, Hu-Li J, Quiel J, Cauchetaux S, Ratner M, Shapira I, Dinarello CA, Paul WE (2009) IL-1 acts directly on CD4 T cells to enhance their antigen-driven expansion and differentiation. Proc Natl Acad Sci U S A 106:7119–7124CrossRefPubMedGoogle Scholar
  10. Bettelli E, Oukka M, Kuchroo VK (2007) T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 8:345–350CrossRefPubMedGoogle Scholar
  11. Bettelli E, Korn T, Oukka M, Kuchroo VK (2008) Induction and effector functions of T(H)17 cells. Nature 453:1051–1057CrossRefPubMedGoogle Scholar
  12. Betts MR, Price DA, Brenchley JM, Lore K, Guenaga FJ, Smed-Sorensen A, Ambrozak DR, Migueles SA, Connors M, Roederer M, Douek DC, Koup RA (2004) The functional profile of primary human antiviral CD8+ T cell effector activity is dictated by cognate peptide concentration. J Immunol 172:6407–6417PubMedGoogle Scholar
  13. Brinkkoetter PT, Marinaki S, Gottmann U, Fleckenstein S, Stump C, Van Der Woude FJ, Braun C, Yard BA (2005) Altered CD46-mediated T cell co-stimulation in haemodialysis patients. Clin Exp Immunol 139:534–541Google Scholar
  14. Casazza JP, Betts MR, Price DA, Precopio ML, Ruff LE, Brenchley JM, Hill BJ, Roederer M, Douek DC, Koup RA (2006) Acquisition of direct antiviral effector functions by CMV-specific CD4+ T lymphocytes with cellular maturation. J Exp Med 203:2865–2877CrossRefPubMedGoogle Scholar
  15. Cattaneo R (2004) Four viruses, two bacteria, and one receptor: membrane cofactor protein (CD46) as pathogens' magnet. J Virol 78:4385–4388CrossRefPubMedGoogle Scholar
  16. Cermelli C, Jacobson S (2000) Viruses and multiple sclerosis. Viral Immunol 13:255–267CrossRefPubMedGoogle Scholar
  17. Challoner PB, Smith KT, Parker JD, MacLeod DL, Coulter SN, Rose TM, Schultz ER, Bennett JL, Garber RL, Chang M et al (1995) Plaque-associated expression of human herpesvirus 6 in multiple sclerosis. Proc Natl Acad Sci U S A 92:7440–7444Google Scholar
  18. Chen Y, Langrish CL, McKenzie B, Joyce-Shaikh B, Stumhofer JS, McClanahan T, Blumenschein W, Churakovsa T, Low J, Presta L, Hunter CA, Kastelein RA, Cua DJ (2006) Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates autoimmune encephalomyelitis. J Clin Invest 116:1317–1326CrossRefPubMedGoogle Scholar
  19. Crimeen-Irwin B, Ellis S, Christiansen D, Ludford-Menting MJ, Milland J, Lanteri M, Loveland BE, Gerlier D, Russell SM (2003) Ligand binding determines whether CD46 is internalized by clathrin-coated pits or macropinocytosis. J Biol Chem 278:46927–46937CrossRefPubMedGoogle Scholar
  20. Donati D, Martinelli E, Cassiani-Ingoni R, Ahlqvist J, Hou J, Major EO, Jacobson S (2005) Variant-specific tropism of human herpesvirus 6 in human astrocytes. J Virol 79:9439–9448CrossRefPubMedGoogle Scholar
  21. Gill DB, Koomey M, Cannon JG, Atkinson JP (2003) Down-regulation of CD46 by piliated Neisseria gonorrhoeae. J Exp Med 198:1313–1322CrossRefPubMedGoogle Scholar
  22. Graber JJ, Allie SR, Mullen KM, Jones MV, Wang T, Krishnan C, Kaplin AI, Nath A, Kerr DA, Calabresi PA (2008) Interleukin-17 in transverse myelitis and multiple sclerosis. J Neuroimmunol 196:124–132CrossRefPubMedGoogle Scholar
  23. Grossman WJ, Verbsky JW, Tollefsen BL, Kemper C, Atkinson JP, Ley TJ (2004) Differential expression of granzymes A and B in human cytotoxic lymphocyte subsets and T regulatory cells. Blood 104:2840–2848CrossRefPubMedGoogle Scholar
  24. Hyc A, Osiecka-Iwan A, Strzelczyk P, Moskalewski S (2003) Effect of IL-1beta, TNF-alpha and IL-4 on complement regulatory protein mRNA expression in human articular chondrocytes. Int J Mol Med 11:91–94PubMedGoogle Scholar
  25. Jacobson S, Flerlage ML, McFarland HF (1985) Impaired measles virus-specific cytotoxic T cell responses in multiple sclerosis. J Exp Med 162:839–850CrossRefPubMedGoogle Scholar
  26. Kallstrom H, Liszewski MK, Atkinson JP, Jonsson AB (1997) Membrane cofactor protein (MCP or CD46) is a cellular pilus receptor for pathogenic Neisseria. Mol Microbiol 25:639–647CrossRefPubMedGoogle Scholar
  27. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, Giuliani F, Arbour N, Becher B, Prat A (2007) Human TH17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med 13:1173–1175CrossRefPubMedGoogle Scholar
  28. Kemper C, Chan AC, Green JM, Brett KA, Murphy KM, Atkinson JP (2003) Activation of human CD4+ cells with CD3 and CD46 induces a T-regulatory cell 1 phenotype. Nature 421:388–392CrossRefPubMedGoogle Scholar
  29. Komiyama Y, Nakae S, Matsuki T, Nambu A, Ishigame H, Kakuta S, Sudo K, Iwakura Y (2006) IL-17 plays an important role in the development of experimental autoimmune encephalomyelitis. J Immunol 177:566–573PubMedGoogle Scholar
  30. Lassmann H, Bruck W, Lucchinetti CF (2007) The immunopathology of multiple sclerosis: an overview. Brain Pathol 17:210–218CrossRefPubMedGoogle Scholar
  31. Marie JC, Astier AL, Rivailler P, Rabourdin-Combe C, Wild TF, Horvat B (2002) Linking innate and acquired immunity: divergent role of CD46 cytoplasmic domains in T cell induced inflammation. Nat Immunol 3:659–666PubMedGoogle Scholar
  32. Moseley TA, Haudenschild DR, Rose L, Reddi AH (2003) Interleukin-17 family and IL-17 receptors. Cytokine Growth Factor Rev 14:155–174CrossRefPubMedGoogle Scholar
  33. Nakae S, Saijo S, Horai R, Sudo K, Mori S, Iwakura Y (2003) IL-17 production from activated T cells is required for the spontaneous development of destructive arthritis in mice deficient in IL-1 receptor antagonist. Proc Natl Acad Sci U S A 100:5986–5990CrossRefPubMedGoogle Scholar
  34. Ogura H, Murakami M, Okuyama Y, Tsuruoka M, Kitabayashi C, Kanamoto M, Nishihara M, Iwakura Y, Hirano T (2008) Interleukin-17 promotes autoimmunity by triggering a positive-feedback loop via interleukin-6 induction. Immunity 29:628–636CrossRefPubMedGoogle Scholar
  35. Oliaro J, Pasam A, Waterhouse NJ, Browne KA, Ludford-Menting MJ, Trapani JA, Russell SM (2006) Ligation of the cell surface receptor, CD46, alters T cell polarity and response to antigen presentation. Proc Natl Acad Sci U S A 103:18685–18690CrossRefPubMedGoogle Scholar
  36. Park H, Li Z, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C (2005) A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nat Immunol 6:1133–1141CrossRefPubMedGoogle Scholar
  37. Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK, Atkinson JP (2004) CD46: expanding beyond complement regulation. Trends Immunol 25:496–503CrossRefPubMedGoogle Scholar
  38. Russell S (2004) CD46: a complement regulator and pathogen receptor that mediates links between innate and acquired immune function. Tissue Antigens 64:111–118CrossRefPubMedGoogle Scholar
  39. Santoro F, Kennedy PE, Locatelli G, Malnati MS, Berger EA, Lusso P (1999) CD46 is a cellular receptor for human herpesvirus 6. Cell 99:817–827CrossRefPubMedGoogle Scholar
  40. Soldan SS, Leist TP, Juhng KN, McFarland HF, Jacobson S (2000) Increased lymphoproliferative response to human herpesvirus type 6A variant in multiple sclerosis patients. Ann Neurol 47:306–313CrossRefPubMedGoogle Scholar
  41. Stromnes IM, Cerretti LM, Liggitt D, Harris RA, Goverman JM (2008) Differential regulation of central nervous system autoimmunity by T(H)1 and T(H)17 cells. Nat Med 14:337–342CrossRefPubMedGoogle Scholar
  42. Suen PM, Zou C, Zhang YA, Lau TK, Chan J, Yao KM, Leung PS (2008) PDZ-domain containing-2 (PDZD2) is a novel factor that affects the growth and differentiation of human fetal pancreatic progenitor cells. Int J Biochem Cell Biol 40:789–803CrossRefPubMedGoogle Scholar
  43. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L (2008) Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol 172:146–155CrossRefPubMedGoogle Scholar
  44. Vaknin-Dembinsky A, Murugaiyan G, Hafler DA, Astier AL, Weiner HL (2008) Increased IL-23 secretion and altered chemokine production by dendritic cells upon CD46 activation in patients with multiple sclerosis. J Neuroimmunol 195:140–145CrossRefPubMedGoogle Scholar
  45. Yang L, Anderson DE, Baecher-Allan C, Hastings WD, Bettelli E, Oukka M, Kuchroo VK, Hafler DA (2008) IL-21 and TGF-beta are required for differentiation of human T(H)17 cells. Nature 454:350–352CrossRefPubMedGoogle Scholar
  46. Yao K, Mandel M, Akyani N, Maynard K, Sengamalay N, Fotheringham J, Ghedin E, Kashanchi F, Jacobson S (2006) Differential HHV-6A gene expression in T cells and primary human astrocytes based on multi-virus array analysis. Glia 53:789–798CrossRefPubMedGoogle Scholar
  47. Yao K, Honarmand S, Espinosa A, Akhyani N, Glaser C, Jacobson S (2009) Detection of human herpesvirus-6 in cerebrospinal fluid of patients with encephalitis. Ann Neurol 65:257–267CrossRefPubMedGoogle Scholar
  48. Zaffran Y, Destaing O, Roux A, Ory S, Nheu T, Jurdic P, Rabourdin-Combe C, Astier AL (2001) CD46/CD3 costimulation induces morphological changes of human T cells and activation of Vav, Rac, and extracellular signal-regulated kinase mitogen-activated protein kinase. J Immunol 167:6780–6785PubMedGoogle Scholar

Copyright information

© US Government 2010

Authors and Affiliations

  • Karen Yao
    • 1
    • 2
  • Jhanelle Graham
    • 1
  • Yoshimi Akahata
    • 1
  • Unsong Oh
    • 1
  • Steven Jacobson
    • 1
    Email author
  1. 1.Viral Immunology Section, NINDS, NIHBethesdaUSA
  2. 2.Department of BiologyJohns Hopkins UniversityBaltimoreUSA

Personalised recommendations