Journal of Neuroimmune Pharmacology

, Volume 5, Issue 3, pp 456–468 | Cite as

Immunoregulation of a CB2 Receptor Agonist in a Murine Model of NeuroAIDS

  • Santhi GorantlaEmail author
  • Edward Makarov
  • Deepa Roy
  • Jennifer Finke-Dwyer
  • L. Charles Murrin
  • Howard E. Gendelman
  • Larisa Poluektova


Chronic HIV-1 infection commonly affects behavioral, cognitive, and motor functions in the infected human host and is commonly referred to as HIV-1-associated neurocognitive disorders (HAND). This occurs, in measure, as a consequence of ingress of leukocytes into brain perivascular regions. Such cells facilitate viral infection and disease by eliciting blood–brain barrier and neuronal network dysfunctions. Previous works demonstrated that the endocannabinoid system modulates neuroimmunity and as such neuronal and glial functions. Herein, we investigated CB2R receptor expression in murine HIV-1 encephalitis (HIVE) and the abilities of a highly selective CB2R agonist, Gp1a, to modulate disease. HIV-1-infected human monocyte-derived macrophages were injected into the caudate and putamen of immunodeficient mice reconstituted with human peripheral blood lymphocytes (hu-PBL/HIVE). Brains of hu-PBL/HIVE mice showed microglial activation and increased expression of CB2R, but not CB1R or GPR55. Gp1a substantively reduced infiltration of human cells into the mouse brain and reduced HLA DQ activation. Gp1a down modulated CCR5 expression on human cells in the spleen with an increase in Fas ligand expression. Our results support the notion that CB2 receptor agonists may be a viable therapeutic candidate for HAND.


human immunodeficiency virus HIV-1-associated neurocognitive disorders CB2R neuroinflammation 



Charles Kusinsky, Meghan Michalak, and Victoria Smith at the University of Nebraska Medical Center, Omaha, NE, are thanked for their help with the FACS analyses. We thank Jillian Braun, summer undergraduate student, for her assistance in data analyses. We thank Dr. Mamoru Ito at Central Institute of Experimental Animals, Kawasaki, Japan for providing Balb/c-Rag2−/−γc−/− mice. We also thank Robin Taylor of the University of Nebraska Medical Center for administrative assistance.


  1. Ances BM, Ellis RJ (2007) Dementia and neurocognitive disorders due to HIV-1 infection. Semin Neurol 27(1):86–92PubMedCrossRefGoogle Scholar
  2. Arevalo-Martin A, Garcia-Ovejero D, Gomez O, Rubio-Araiz A, Navarro-Galve B, Guaza C, Molina-Holgado E, Molina-Holgado F (2008) CB2 cannabinoid receptors as an emerging target for demyelinating diseases: from neuroimmune interactions to cell replacement strategies. Br J Pharmacol 153(2):216–225PubMedCrossRefGoogle Scholar
  3. Ashton JC, Glass M (2007) The cannabinoid CB2 receptor as a target for inflammation-dependent neurodegeneration. Curr Neuropharmacol 5(2):73–80PubMedCrossRefGoogle Scholar
  4. Basavarajappa BS, Nixon RA, Arancio O (2009) Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration. Mini Rev Med Chem 9(4):448–462PubMedCrossRefGoogle Scholar
  5. Benito C, Nunez E, Tolon RM, Carrier EJ, Rabano A, Hillard CJ, Romero J (2003) Cannabinoid CB2 receptors and fatty acid amide hydrolase are selectively overexpressed in neuritic plaque-associated glia in Alzheimer’s disease brains. J Neurosci 23(35):11136–11141PubMedGoogle Scholar
  6. Benito C, Kim WK, Chavarria I, Hillard CJ, Mackie K, Tolon RM, Williams K, Romero J (2005) A glial endogenous cannabinoid system is upregulated in the brains of macaques with simian immunodeficiency virus-induced encephalitis. J Neurosci 25(10):2530–2536PubMedCrossRefGoogle Scholar
  7. Benito C, Nunez E, Pazos MR, Tolon RM, Romero J (2007a) The endocannabinoid system and Alzheimer’s disease. Mol Neurobiol 36(1):75–81PubMedCrossRefGoogle Scholar
  8. Benito C, Romero JP, Tolon RM, Clemente D, Docagne F, Hillard CJ, Guaza C, Romero J (2007b) Cannabinoid CB1 and CB2 receptors and fatty acid amide hydrolase are specific markers of plaque cell subtypes in human multiple sclerosis. J Neurosci 27(9):2396–2402PubMedCrossRefGoogle Scholar
  9. Berney T, Molano RD, Pileggi A, Cattan P, Li H, Ricordi C, Inverardi L (2001) Patterns of engraftment in different strains of immunodeficient mice reconstituted with human peripheral blood lymphocytes. Transplantation 72(1):133–140PubMedCrossRefGoogle Scholar
  10. Berrendero F, Sanchez A, Cabranes A, Puerta C, Ramos JA, Garcia-Merino A, Fernandez-Ruiz J (2001) Changes in cannabinoid CB(1) receptors in striatal and cortical regions of rats with experimental allergic encephalomyelitis, an animal model of multiple sclerosis. Synapse 41(3):195–202PubMedCrossRefGoogle Scholar
  11. Buckley NE (2008) The peripheral cannabinoid receptor knockout mice: an update. Br J Pharmacol 153(2):309–318PubMedCrossRefGoogle Scholar
  12. Burstein SH, Audette CA, Breuer A, Devane WA, Colodner S, Doyle SA, Mechoulam R (1992) Synthetic nonpsychotropic cannabinoids with potent antiinflammatory, analgesic, and leukocyte antiadhesion activities. J Med Chem 35(17):3135–3141PubMedCrossRefGoogle Scholar
  13. Cabral GA, Griffin-Thomas L (2008) Cannabinoids as therapeutic agents for ablating neuroinflammatory disease. Endocr Metab Immune Disord Drug Targets 8(3):159–172PubMedCrossRefGoogle Scholar
  14. Cabral GA, Harmon KN, Carlisle SJ (2001) Cannabinoid-mediated inhibition of inducible nitric oxide production by rat microglial cells: evidence for CB1 receptor participation. Adv Exp Med Biol 493:207–214PubMedCrossRefGoogle Scholar
  15. Cabral GA, Raborn ES, Griffin L, Dennis J, Marciano-Cabral F (2008) CB2 receptors in the brain: role in central immune function. Br J Pharmacol 153(2):240–251PubMedCrossRefGoogle Scholar
  16. Centonze D, Rossi S, Finazzi-Agro A, Bernardi G, Maccarrone M (2007) The (endo)cannabinoid system in multiple sclerosis and amyotrophic lateral sclerosis. Int Rev Neurobiol 82:171–186PubMedCrossRefGoogle Scholar
  17. Correa F, Docagne F, Mestre L, Loria F, Hernangomez M, Borrell J, Guaza C (2007) Cannabinoid system and neuroinflammation: implications for multiple sclerosis. Neuroimmunomodulation 14(3–4):182–187PubMedCrossRefGoogle Scholar
  18. Cota M, Mengozzi M, Vicenzi E, Panina-Bordignon P, Sinigaglia F, Transidico P, Sozzani S, Mantovani A, Poli G (2000) Selective inhibition of HIV replication in primary macrophages but not T lymphocytes by macrophage-derived chemokine. Proc Natl Acad Sci U S A 97(16):9162–9167PubMedCrossRefGoogle Scholar
  19. Dhein J, Walczak H, Baumler C, Debatin KM, Krammer PH (1995) Autocrine T-cell suicide mediated by APO-1/(Fas/CD95). Nature 373(6513):438–441PubMedCrossRefGoogle Scholar
  20. Docagne F, Mestre L, Loria F, Hernangomez M, Correa F, Guaza C (2008) Therapeutic potential of CB2 targeting in multiple sclerosis. Expert Opin Ther Targets 12(2):185–195PubMedCrossRefGoogle Scholar
  21. Eggert D, Dash PK, Serradji N, Dong CZ, Clayette P, Heymans F, Dou H, Gorantla S, Gelbard HA, Poluektova L et al (2009) Development of a platelet-activating factor antagonist for HIV-1 associated neurocognitive disorders. J Neuroimmunol 213(1-2):47–59PubMedCrossRefGoogle Scholar
  22. Eggert D, Dash PK, Gorantla S, Dou H, Schifitto G, Maggirwar SB, Dewhurst S, Poluektova L, Gelbard HA, Gendelman HE (2010) Neuroprotective activities of CEP-1347 in models of neuroAIDS. J Immunol 184(2):746–756PubMedCrossRefGoogle Scholar
  23. Ehrhart J, Obregon D, Mori T, Hou H, Sun N, Bai Y, Klein T, Fernandez F, Tan J, Shytle RD (2005) Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation. J Neuroinflammation 2:29PubMedCrossRefGoogle Scholar
  24. Facchinetti F, Del Giudice E, Furegato S, Passarotto M, Leon A (2003) Cannabinoids ablate release of TNFalpha in rat microglial cells stimulated with lipopolysaccharide. Glia 41(2):161–168PubMedCrossRefGoogle Scholar
  25. Galiegue S, Mary S, Marchand J, Dussossoy D, Carriere D, Carayon P, Bouaboula M, Shire D, Le Fur G, Casellas P (1995) Expression of central and peripheral cannabinoid receptors in human immune tissues and leukocyte subpopulations. Eur J Biochem 232(1):54–61PubMedCrossRefGoogle Scholar
  26. Gendelman HE, Persidsky Y, Ghorpade A, Limoges J, Stins M, Fiala M, Morrisett R (1997) The neuropathogenesis of the AIDS dementia complex. Aids 11(Suppl A):35–45Google Scholar
  27. Gendelman HE, Diesing S, Gelbard H, Swindells S (2004) The neuropathogenesis of HIV-1 infection. Elsevier, London, pp 95–116Google Scholar
  28. Goldman JP, Blundell MP, Lopes L, Kinnon C, Di Santo JP, Thrasher AJ (1998) Enhanced human cell engraftment in mice deficient in RAG2 and the common cytokine receptor gamma chain. Br J Haematol 103(2):335–342PubMedCrossRefGoogle Scholar
  29. Gonsiorek W, Hesk D, Chen SC, Kinsley D, Fine JS, Jackson JV, Bober LA, Deno G, Bian H, Fossetta J et al (2006) Characterization of peripheral human cannabinoid receptor (hCB2) expression and pharmacology using a novel radioligand, [35S]Sch225336. J Biol Chem 281(38):28143–28151PubMedCrossRefGoogle Scholar
  30. Gorantla S, Liu J, Sneller H, Dou H, Holguin A, Smith L, Ikezu T, Volsky DJ, Poluektova L, Gendelman HE (2007) Copolymer-1 induces adaptive immune anti-inflammatory glial and neuroprotective responses in a murine model of HIV-1 encephalitis. J Immunol 179(7):4345–4356PubMedGoogle Scholar
  31. Gorin NC, Piantadosi S, Stull M, Bonte H, Wingard JR, Civin C (2002) Increased risk of lethal graft-versus-host disease-like syndrome after transplantation into NOD/SCID mice of human mobilized peripheral blood stem cells, as compared to bone marrow or cord blood. J Hematother Stem Cell Res 11(2):277–292PubMedCrossRefGoogle Scholar
  32. Green DR, Droin N, Pinkoski M (2003) Activation-induced cell death in T cells. Immunol Rev 193:70–81PubMedCrossRefGoogle Scholar
  33. Hoffmann-Fezer G, Gall C, Zengerle U, Kranz B, Thierfelder S (1993) Immunohistology and immunocytology of human T-cell chimerism and graft-versus-host disease in SCID mice. Blood 81(12):3440–3448PubMedGoogle Scholar
  34. Huppes W, Fickenscher H, tHart BA, Fleckenstein B (1994) Cytokine dependence of human to mouse graft-versus-host disease. Scand J Immunol 40(1):26–36PubMedCrossRefGoogle Scholar
  35. Ju ST, Panka DJ, Cui H, Ettinger R, el-Khatib M, Sherr DH, Stanger BZ, Marshak-Rothstein A (1995) Fas(CD95)/FasL interactions required for programmed cell death after T-cell activation. Nature 373(6513):444–448PubMedCrossRefGoogle Scholar
  36. Kaul M, Lipton SA (2006) Mechanisms of neuronal injury and death in HIV-1 associated dementia. Curr HIV Res 4(3):307–318PubMedCrossRefGoogle Scholar
  37. Kaul M, Zheng J, Okamoto S, Gendelman HE, Lipton SA (2005) HIV-1 infection and AIDS: consequences for the central nervous system. Cell Death Differ 12(Suppl 1):878–892PubMedCrossRefGoogle Scholar
  38. Klein TW, Newton CA (2007) Therapeutic potential of cannabinoid-based drugs. Adv Exp Med Biol 601:395–413PubMedCrossRefGoogle Scholar
  39. Kreitzer FR, Stella N (2009) The therapeutic potential of novel cannabinoid receptors. Pharmacol Ther 122(2):83–96PubMedCrossRefGoogle Scholar
  40. Lastres-Becker I, Molina-Holgado F, Ramos JA, Mechoulam R, Fernandez-Ruiz J (2005) Cannabinoids provide neuroprotection against 6-hydroxydopamine toxicity in vivo and in vitro: relevance to Parkinson’s disease. Neurobiol Dis 19(1–2):96–107PubMedCrossRefGoogle Scholar
  41. Leonelli M, Torrao AS, Britto LR (2009) Unconventional neurotransmitters, neurodegeneration and neuroprotection. Braz J Med Biol Res 42(1):68–75PubMedCrossRefGoogle Scholar
  42. Loetscher P, Uguccioni M, Bordoli L, Baggiolini M, Moser B, Chizzolini C, Dayer JM (1998) CCR5 is characteristic of Th1 lymphocytes. Nature 391(6665):344–345PubMedCrossRefGoogle Scholar
  43. Lombard C, Nagarkatti M, Nagarkatti P (2007) CB2 cannabinoid receptor agonist, JWH-015, triggers apoptosis in immune cells: potential role for CB2-selective ligands as immunosuppressive agents. Clin Immunol 122(3):259–270PubMedCrossRefGoogle Scholar
  44. Lunn CA, Reich EP, Bober L (2006) Targeting the CB2 receptor for immune modulation. Expert Opin Ther Targets 10(5):653–663PubMedCrossRefGoogle Scholar
  45. Lunn CA, Reich EP, Fine JS, Lavey B, Kozlowski JA, Hipkin RW, Lundell DJ, Bober L (2008) Biology and therapeutic potential of cannabinoid CB2 receptor inverse agonists. Br J Pharmacol 153(2):226–239PubMedCrossRefGoogle Scholar
  46. Mackie K, Stella N (2006) Cannabinoid receptors and endocannabinoids: evidence for new players. AAPS J 8(2):E298–E306PubMedGoogle Scholar
  47. Marcondes MCG, Burudi EME, Huitron-Resendiz S, Sanchez-Alavez M, Watry D, Zandonatti M, Henriksen SJ, Fox HS (2001) Highly activated CD8+ T cells in the brain correlate with early central nervous system dysfunction in simian immunodeficiency virus infection. J Immunol 167(9):5429–5438PubMedGoogle Scholar
  48. Marcondes MC, Phillipson CA, Fox HS (2003) Distinct clonal repertoire of brain CD8+ cells in simian immunodeficiency virus infection. AIDS 17(11):1605–1611PubMedCrossRefGoogle Scholar
  49. Mestre L, Docagne F, Correa F, Loria F, Hernangomez M, Borrell J, Guaza C (2009) A cannabinoid agonist interferes with the progression of a chronic model of multiple sclerosis by downregulating adhesion molecules. Mol Cell Neurosci 40(2):258–266PubMedCrossRefGoogle Scholar
  50. Murineddu G, Lazzari P, Ruiu S, Sanna A, Loriga G, Manca I, Falzoi M, Dessi C, Curzu MM, Chelucci G et al (2006) Tricyclic pyrazoles. 4. Synthesis and biological evaluation of analogues of the robust and selective CB2 cannabinoid ligand 1-(2′, 4′-dichlorophenyl)-6-methyl-N-piperidin-1-yl-1, 4-dihydroindeno[1, 2-c ]pyrazole-3-carboxamide. J Med Chem 49(25):7502–7512PubMedCrossRefGoogle Scholar
  51. Onaivi ES (2009) Cannabinoid receptors in brain: pharmacogenetics, neuropharmacology, neurotoxicology, and potential therapeutic applications. Int Rev Neurobiol 88:335–369PubMedCrossRefGoogle Scholar
  52. Ostrowski MA, Justement SJ, Catanzaro A, Hallahan CA, Ehler LA, Mizell SB, Kumar PN, Mican JA, Chun TW, Fauci AS (1998) Expression of chemokine receptors CXCR4 and CCR5 in HIV-1-infected and uninfected individuals. J Immunol 161(6):3195–3201PubMedGoogle Scholar
  53. Pacher P, Batkai S, Kunos G (2006) The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol Rev 58(3):389–462PubMedCrossRefGoogle Scholar
  54. Patel KD, Davison JS, Pittman QJ, Sharkey KA (2010) Cannabinoid CB(2) receptors in health and disease. Curr Med Chem 17(14):1394–1410CrossRefGoogle Scholar
  55. Pearson T, Greiner DL, Shultz LD (2008) Humanized SCID mouse models for biomedical research. Curr Top Microbiol Immunol 324:25–51PubMedCrossRefGoogle Scholar
  56. Pino S, Brehm MA, Covassin-Barberis L, King M, Gott B, Chase TH, Wagner J, Burzenski L, Foreman O, Greiner DL et al (2010) Development of novel major histocompatibility complex class I and class II-deficient NOD-SCID IL2R gamma chain knockout mice for modeling human xenogeneic graft-versus-host disease. Methods Mol Biol 602:105–117PubMedCrossRefGoogle Scholar
  57. Piomelli D (2005) The endocannabinoid system: a drug discovery perspective. Curr Opin Investig Drugs 6(7):672–679PubMedGoogle Scholar
  58. Poluektova LY, Munn DH, Persidsky Y, Gendelman HE (2002) Generation of cytotoxic T cells against virus-infected human brain macrophages in a murine model of HIV-1 encephalitis. J Immunol 168(8):3941–3949PubMedGoogle Scholar
  59. Poluektova L, Gorantla S, Faraci J, Birusingh K, Dou H, Gendelman HE (2004a) Neuroregulatory events follow adaptive immune-mediated elimination of HIV-1-infected macrophages: studies in a murine model of viral encephalitis. J Immunol 172(12):7610–7617PubMedGoogle Scholar
  60. Poluektova LY, Gorantla S, Gendelman HE (2004b) Studies of adaptive immunity in a murine model of HIV-1 encephalitis. In: Gendelman HE, Grant I, Lipton S, Swindells S (eds) Neurology of AIDS. Oxford University Press, OxfordGoogle Scholar
  61. Potula R, Poluektova L, Knipe B, Chrastil J, Heilman D, Dou H, Takikawa O, Munn DH, Gendelman HE, Persidsky Y (2005) Inhibition of indoleamine 2, 3-dioxygenase (IDO) enhances elimination of virus-infected macrophages in an animal model of HIV-1 encephalitis. Blood 106(7):2382–2390PubMedCrossRefGoogle Scholar
  62. Price DA, Martinez AA, Seillier A, Koek W, Acosta Y, Fernandez E, Strong R, Lutz B, Marsicano G, Roberts JL et al (2009) WIN55, 212-2, a cannabinoid receptor agonist, protects against nigrostriatal cell loss in the 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine mouse model of Parkinson’s disease. Eur J Neurosci 29(11):2177–2186PubMedCrossRefGoogle Scholar
  63. Puffenbarger RA, Boothe AC, Cabral GA (2000) Cannabinoids inhibit LPS-inducible cytokine mRNA expression in rat microglial cells. Glia 29(1):58–69PubMedCrossRefGoogle Scholar
  64. Qin S, Rottman JB, Myers P, Kassam N, Weinblatt M, Loetscher M, Koch AE, Moser B, Mackay CR (1998) The chemokine receptors CXCR3 and CCR5 mark subsets of T cells associated with certain inflammatory reactions. J Clin Invest 101(4):746–754PubMedCrossRefGoogle Scholar
  65. Rock RB, Gekker G, Hu S, Sheng WS, Cabral GA, Martin BR, Peterson PK (2007) WIN55, 212-2-mediated inhibition of HIV-1 expression in microglial cells: involvement of cannabinoid receptors. J Neuroimmune Pharmacol 2(2):178–183PubMedCrossRefGoogle Scholar
  66. Rostasy K, Monti L, Yiannoutsos C, Kneissl M, Bell J, Kemper TL, Hedreen JC, Navia BA (1999) Human immunodeficiency virus infection, inducible nitric oxide synthase expression, and microglial activation: pathogenetic relationship to the acquired immunodeficiency syndrome dementia complex. Ann Neurol 46(2):207–216PubMedCrossRefGoogle Scholar
  67. Roychowdhury S, Blaser BW, Freud AG, Katz K, Bhatt D, Ferketich AK, Bergdall V, Kusewitt D, Baiocchi RA, Caligiuri MA (2005) IL-15 but not IL-2 rapidly induces lethal xenogeneic graft-versus-host disease. Blood 106(7):2433–2435PubMedCrossRefGoogle Scholar
  68. Ryberg E, Larsson N, Sjogren S, Hjorth S, Hermansson NO, Leonova J, Elebring T, Nilsson K, Drmota T, Greasley PJ (2007) The orphan receptor GPR55 is a novel cannabinoid receptor. Br J Pharmacol 152(7):1092–1101PubMedCrossRefGoogle Scholar
  69. Schneider MK, Gronvik KO (1995) Acute graft-versus-host reaction in SCID mice leads to an abnormal expansion of CD8+ V beta 14+ and a broad inactivation of donor T cells followed by a host-restricted tolerance and a normalization of the TCR V beta repertoire in the chronic phase. Scand J Immunol 41(4):373–383PubMedCrossRefGoogle Scholar
  70. Shoemaker JL, Seely KA, Reed RL, Crow JP, Prather PL (2007) The CB2 cannabinoid agonist AM-1241 prolongs survival in a transgenic mouse model of amyotrophic lateral sclerosis when initiated at symptom onset. J Neurochem 101(1):87–98PubMedCrossRefGoogle Scholar
  71. Smith DG, Guillemin GJ, Pemberton L, Kerr S, Nath A, Smythe GA, Brew BJ (2001) Quinolinic acid is produced by macrophages stimulated by platelet activating factor, Nef and Tat. J NeuroVirol 7(1):56–60PubMedCrossRefGoogle Scholar
  72. Steffens S, Veillard NR, Arnaud C, Pelli G, Burger F, Staub C, Karsak M, Zimmer A, Frossard JL, Mach F (2005) Low dose oral cannabinoid therapy reduces progression of atherosclerosis in mice. Nature 434(7034):782–786PubMedCrossRefGoogle Scholar
  73. Stella N (2009) Endocannabinoid signaling in microglial cells. Neuropharmacology 56(Suppl 1):244–253PubMedCrossRefGoogle Scholar
  74. Takahashi T, Tanaka M, Brannan CI, Jenkins NA, Copeland NG, Suda T, Nagata S (1994) Generalized lymphoproliferative disease in mice, caused by a point mutation in the Fas ligand. Cell 76(6):969–976PubMedCrossRefGoogle Scholar
  75. Tary-Lehmann M, Lehmann PV, Schols D, Roncarolo MG, Saxon A (1994) Anti-SCID mouse reactivity shapes the human CD4+ T cell repertoire in hu-PBL-SCID chimeras. J Exp Med 180(5):1817–1827PubMedCrossRefGoogle Scholar
  76. Thakur GA, Tichkule R, Bajaj S, Makriyannis A (2009) Latest advances in cannabinoid receptor agonists. Expert Opin Ther Pat 19(12):1647–1673PubMedCrossRefGoogle Scholar
  77. Tournoy KG, Depraetere S, Pauwels RA, Leroux-Roels GG (2000) Mouse strain and conditioning regimen determine survival and function of human leucocytes in immunodeficient mice. Clin Exp Immunol 119(1):231–239PubMedCrossRefGoogle Scholar
  78. Van Duyne R, Pedati C, Guendel I, Carpio L, Kehn-Hall K, Saifuddin M, Kashanchi F (2009) The utilization of humanized mouse models for the study of human retroviral infections. Retrovirology 6(1):76PubMedCrossRefGoogle Scholar
  79. Verlinden SF, Mulder AH, de Leeuw JP, van Bekkum DW (1998) T lymphocytes determine the development of xeno GVHD and of human hemopoiesis in NOD/SCID mice following human umbilical cord blood transplantation. Stem Cells 16(Suppl 1):205–217PubMedGoogle Scholar
  80. Waksman Y, Olson JM, Carlisle SJ, Cabral GA (1999) The central cannabinoid receptor (CB1) mediates inhibition of nitric oxide production by rat microglial cells. J Pharmacol Exp Ther 288(3):1357–1366PubMedGoogle Scholar
  81. Xu H, Cheng CL, Chen M, Manivannan A, Cabay L, Pertwee RG, Coutts A, Forrester JV (2007) Anti-inflammatory property of the cannabinoid receptor-2-selective agonist JWH-133 in a rodent model of autoimmune uveoretinitis. J Leukoc Biol 82(3):532–541PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Santhi Gorantla
    • 1
    • 2
    Email author
  • Edward Makarov
    • 1
  • Deepa Roy
    • 1
  • Jennifer Finke-Dwyer
    • 1
  • L. Charles Murrin
    • 1
  • Howard E. Gendelman
    • 1
  • Larisa Poluektova
    • 1
  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Department of Pharmacology and Experimental Neuroscience985880 Nebraska Medical CenterOmahaUSA

Personalised recommendations