Journal of Neuroimmune Pharmacology

, Volume 5, Issue 2, pp 252–259 | Cite as

Increasing CNS Noradrenaline Reduces EAE Severity

  • Maria Vittoria Simonini
  • Paul E. Polak
  • Anthony Sharp
  • Susan McGuire
  • Elena Galea
  • Douglas L. Feinstein
Original Article


The endogenous neurotransmitter noradrenaline (NA) is known to exert potent anti-inflammatory effects in glial cells, as well as provide neuroprotection against excitatory and inflammatory stimuli. These properties raise the possibility that increasing levels of NA in the central nervous system (CNS) could provide benefit in neurological diseases and conditions containing an inflammatory component. In the current study, we tested this possibility by examining the consequences of selectively modulating CNS NA levels on the development of clinical signs in experimental autoimmune encephalomyelitis (EAE). In mice immunized with myelin oligodendrocyte glycoprotein peptide to develop a chronic disease, pretreatment to selectively deplete CNS NA levels exacerbated clinical scores. Elevation of NA levels using the selective NA reuptake inhibitor atomoxetine did not affect clinical scores, while treatment of immunized mice with the synthetic NA precursor l-threo-3,4-dihydroxyphenylserine (l-DOPS) prevented further worsening. In contrast, treatment of mice with a combination of atomoxetine and l-DOPS led to significant improvement in clinical scores as compared to the control group. The combined treatment reduced astrocyte activation in the molecular layer of the cerebellum as assessed by staining for glial fibrillary protein but did not affect Th1 or Th17 type cytokine production from splenic T cells. These data suggest that selective elevation of CNS NA levels could provide benefit in EAE and multiple sclerosis without influencing peripheral immune responses.


multiple sclerosis locus coeruleus catecholamines astrocyte demyelination antidepressant 


  1. Abramsky O, Wertman E, Reches A, Brenner T, Ovadia H (1987) Effect of hypothalamic lesions on experimental autoimmune diseases in rats. Ann N Y Acad Sci 496:360–365CrossRefPubMedGoogle Scholar
  2. Barkhatova VP, Zavalishin IA, Askarova LS, Shavratskii VK, Demina EG (1998) Changes in neurotransmitters in multiple sclerosis. Neurosci Behav Physiol 28:341–344CrossRefPubMedGoogle Scholar
  3. Berne-Fromell K, Fromell H, Lundkvist S, Lundkvist P (1987) Is multiple sclerosis the equivalent of Parkinson's disease for noradrenaline? Med Hypotheses 23:409–415CrossRefPubMedGoogle Scholar
  4. Carnevale D, De SR, Minghetti L (2007) Microglia-neuron interaction in inflammatory and degenerative diseases: role of cholinergic and noradrenergic systems. CNS Neurol Disord Drug Targets 6:388–397CrossRefPubMedGoogle Scholar
  5. Chelmicka-Schorr E, Checinski M, Arnason BG (1988) Chemical sympathectomy augments the severity of experimental allergic encephalomyelitis. J Neuroimmunol 17:347–350CrossRefPubMedGoogle Scholar
  6. Chelmicka-Schorr E, Kwasniewski MN, Thomas BE, Arnason BG (1989) The beta-adrenergic agonist isoproterenol suppresses experimental allergic encephalomyelitis in Lewis rats. J Neuroimmunol 25:203–207CrossRefPubMedGoogle Scholar
  7. Chelmicka-Schorr E, Wollmann RL, Kwasniewski MN, Kim DH, Dupont BL (1993) The beta 2-adrenergic agonist terbutaline suppresses acute passive transfer experimental autoimmune myasthenia gravis (EAMG). Int J Immunopharmacol 15:19–24CrossRefPubMedGoogle Scholar
  8. Cosentino M, Zaffaroni M, Marino F, Bombelli R, Ferrari M, Rasini E, Lecchini S, Ghezzi A, Frigo G (2002) Catecholamine production and tyrosine hydroxylase expression in peripheral blood mononuclear cells from multiple sclerosis patients: effect of cell stimulation and possible relevance for activation-induced apoptosis. J Neuroimmunol 133:233–240CrossRefPubMedGoogle Scholar
  9. Debeir T, Marien M, Ferrario J, Rizk P, Prigent A, Colpaert F, Raisman-Vozari R (2004) In vivo upregulation of endogenous NGF in the rat brain by the alpha2-adrenoreceptor antagonist dexefaroxan: potential role in the protection of the basalocortical cholinergic system during neurodegeneration. Exp Neurol 190:384–395CrossRefPubMedGoogle Scholar
  10. Dinter H, Tse J, Halks-Miller M, Asarnow D, Onuffer J, Faulds D, Mitrovic B, Kirsch G, Laurent H, Esperling P, Seidelmann D, Ottow E, Schneider H, Tuohy VK, Wachtel H, Perez HD (2000) The type IV phosphodiesterase specific inhibitor mesopram inhibits experimental autoimmune encephalomyelitis in rodents. J Neuroimmunol 108:136–146CrossRefPubMedGoogle Scholar
  11. Feinstein DL, Galea E, Gavrilyuk V, Brosnan CF, Whitacre CC, Dumitrescu-Ozimek L, Landreth GE, Pershadsingh HA, Weinberg G, Heneka MT (2002a) Peroxisome proliferator-activated receptor-gamma agonists prevent experimental autoimmune encephalomyelitis. Ann Neurol 51:694–702CrossRefPubMedGoogle Scholar
  12. Feinstein DL, Heneka MT, Gavrilyuk V, Dello Russo C, Weinberg G, Galea E (2002b) Noradrenergic regulation of inflammatory gene expression in brain. Neurochem Int 41:357–365CrossRefPubMedGoogle Scholar
  13. Fritschy JM, Grzanna R (1991) Experimentally-induced neuron loss in the locus coeruleus of adult rats. Exp Neurol 111:123–127CrossRefPubMedGoogle Scholar
  14. Galea E, Heneka MT, Dello Russo C, Feinstein DL (2003) Intrinsic regulation of brain inflammatory responses. Cell Mol Neurobiol 23:625–635CrossRefPubMedGoogle Scholar
  15. Genain CP, Roberts T, Davis RL, Nguyen MH, Uccelli A, Faulds D, Li Y, Hedgpeth J, Hauser SL (1995) Prevention of autoimmune demyelination in non-human primates by a campspecific phosphodiesterase inhibitor. Proc Natl Acad Sci USA 92:3601–3605CrossRefPubMedGoogle Scholar
  16. Goldstein DS (2006) l-Dihydroxyphenylserine (l-DOPS): a norepinephrine prodrug. Cardiovasc Drug Rev 24:189–203CrossRefPubMedGoogle Scholar
  17. Gould TJ, Rukstalis M, Lewis MC (2005) Atomoxetine and nicotine enhance prepulse inhibition of acoustic startle in C57BL/6 mice. Neurosci Lett 377:85–90CrossRefPubMedGoogle Scholar
  18. Hashioka S, Klegeris A, Monji A, Kato T, Sawada M, McGeer PL, Kanba S (2007) Antidepressants inhibit interferon-gamma-induced microglial production of IL-6 and nitric oxide. Exp Neurol 206:33–42CrossRefPubMedGoogle Scholar
  19. Heneka MT, Galea E, Gavriluyk V, Dumitrescu-Ozimek L, Daeschner J, O'Banion MK, Weinberg G, Klockgether T, Feinstein DL (2002) Noradrenergic depletion potentiates betaamyloid-induced cortical inflammation: implications for Alzheimer's disease. J Neurosci 22:2434–2442PubMedGoogle Scholar
  20. Heneka MT, Gavrilyuk V, Landreth GE, O'Banion MK, Weinberg G, Feinstein DL (2003) Noradrenergic depletion increases inflammatory responses in brain: effects on IkappaB and HSP70 expression. J Neurochem 85:387–398CrossRefPubMedGoogle Scholar
  21. Honegger CG, Isler H (1984) Neurotransmitters, precursors and metabolites in spinal cord and brain of Lewis rats with EAE. Prog Clin Biol Res 146:131–138PubMedGoogle Scholar
  22. Jonsson G, Hallman H, Ponzio F, Ross S (1981) DSP4 (N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine) a useful denervation tool for central and peripheral noradrenaline neurons. Eur J Pharmacol 72:173–188CrossRefPubMedGoogle Scholar
  23. Jovanova-Nesic K, Nikolic V, Jankovic BD (1993) Locus ceruleus and immunity. II. Suppression of experimental allergic encephalomyelitis and hypersensitivity skin reactions in rats with lesioned locus ceruleus. Int J Neurosci 68:289–294CrossRefPubMedGoogle Scholar
  24. Kalinin S, Polak PE, Madrigal JL, Gavrilyuk V, Sharp A, Chauhan N, Marien M, Colpaert F, Feinstein DL (2006) Beta-amyloid-dependent expression of NOS2 in neurons: prevention by an alpha2-adrenergic antagonist. Antioxid Redox Signal 8:873–883CrossRefPubMedGoogle Scholar
  25. Kato T, Katsuyama M, Karai N, Hirose A, Nakamura M, Katsube J (1986) Reversal of the reserpine-induced ptosis by l-threo-3, 4-dihydroxy-phenylserine (l-threo-DOPS), a (−)-norepinephrine precursor, and its potentiation by imipramine or nialamide. Naunyn Schmiedebergs Arch Pharmacol 332:243–246CrossRefPubMedGoogle Scholar
  26. Khoruzhaia TA, Saakov BA (1975) Change in monoamine content and monoamine oxidase activity in brain structures during experimental allergic encephalomyelitis. Biull Eksp Biol Med 79:80–82PubMedGoogle Scholar
  27. Konkol RJ, Wesselmann U, Karpus WJ, Leo GL, Killen JA, Roerig DL (1990) Suppression of clinical weakness in experimental autoimmune encephalomyelitis associated with weight changes, and post-decapitation convulsions after intracisternal-ventricular administration of 6-hydroxydopamine. J Neuroimmunol 26:25–34CrossRefPubMedGoogle Scholar
  28. Krenger W, Honegger CG, Feurer C, Cammisuli S (1986) Changes of neurotransmitter systems in chronic relapsing experimental allergic encephalomyelitis in rat brain and spinal cord. J Neurochem 47:1247–1254CrossRefPubMedGoogle Scholar
  29. Leonard JP, MacKenzie FJ, Patel HA, Cuzner ML (1991) Hypothalamic noradrenergic pathways exert an influence on neuroendocrine and clinical status in experimental autoimmune encephalomyelitis. Brain Behav Immun 5:328–338CrossRefPubMedGoogle Scholar
  30. Lewerenz J, Letz J, Methner A (2003) Activation of stimulatory heterotrimeric G proteins increases glutathione and protects neuronal cells against oxidative stress. J Neurochem 87:522–531CrossRefPubMedGoogle Scholar
  31. Loder C, Allawi J, Horrobin DF (2002) Treatment of multiple sclerosis with lofepramine, l-phenylalanine and vitamin B (12): mechanism of action and clinical importance: roles of the locus coeruleus and central noradrenergic systems. Med Hypotheses 59:594–602CrossRefPubMedGoogle Scholar
  32. Madrigal JL, Russo CD, Gavrilyuk V, Feinstein DL (2006) Effects of noradrenaline on neuronal NOS2 expression and viability. Antioxid Redox Signal 8:885–892CrossRefPubMedGoogle Scholar
  33. Madrigal JL, Kalinin S, Richardson JC, Feinstein DL (2007) Neuroprotective actions of noradrenaline: effects on glutathione synthesis and activation of peroxisome proliferator activated receptor delta. J Neurochem 103:2092–2101CrossRefPubMedGoogle Scholar
  34. Marien MR, Colpaert FC, Rosenquist AC (2004) Noradrenergic mechanisms in neurodegenerative diseases: a theory. Brain Res Rev 45:38–78CrossRefPubMedGoogle Scholar
  35. Nakamura K, Ahmed M, Barr E, Leiden JM, Kang UJ (2000) The localization and functional contribution of striatal aromatic l-amino acid decarboxylase to l-3, 4-dihydroxyphenylalanine decarboxylation in rodent parkinsonian models. Cell Transplant 9:567–576PubMedGoogle Scholar
  36. Prince JB (2006) Pharmacotherapy of attention-deficit hyperactivity disorder in children and adolescents: update on new stimulant preparations, atomoxetine, and novel treatments. Child Adolesc Psychiatr Clin N Am 15:13–50CrossRefPubMedGoogle Scholar
  37. Puri BK, Bydder GM, Chaudhuri KR, Al Saffar BY, Curati WL, White SJ, Mitchell L, Hajnal JV, Horrobin DF (2001) MRI changes in multiple sclerosis following treatment with lofepramine and l-phenylalanine. Neuroreport 12:1821–1824CrossRefPubMedGoogle Scholar
  38. Rajda C, Bencsik K, Fuvesi J, Seres E, Vecsei L, Bergquist J (2006) The norepinephrine level is decreased in the lymphocytes of long-term interferon-beta-treated multiple sclerosis patients. Mult Scler 12:265–270CrossRefPubMedGoogle Scholar
  39. Russo-Neustadt A, Beard RC, Cotman CW (1999) Exercise, antidepressant medications, and enhanced brain derived neurotrophic factor expression. Neuropsychopharmacol 21:679–682CrossRefGoogle Scholar
  40. Sharp AJ, Polak PE, Simonini V, Lin SX, Richardson JC, Bongarzone ER, Feinstein DL (2008) P2x7 deficiency suppresses development of experimental autoimmune encephalomyelitis. J Neuroinflammation 5:33CrossRefPubMedGoogle Scholar
  41. Sommer N, Martin R, McFarland HF, Quigley L, Cannella B, Raine CS, Scott DE, Loschmann PA, Racke MK (1997) Therapeutic potential of phosphodiesterase type 4 inhibition in chronic autoimmune demyelinating disease. J Neuroimmunol 79:54–61CrossRefPubMedGoogle Scholar
  42. Trojanowski JQ, Atkinson B, Lee VM (1986) An immunocytochemical study of normal and abnormal human cerebrospinal fluid with monoclonal antibodies to glial fibrillary acidic protein. Acta Cytol 30:235–239PubMedGoogle Scholar
  43. Vollmar P, Nessler S, Kalluri SR, Hartung HP, Hemmer B (2008) The antidepressant venlafaxine ameliorates murine experimental autoimmune encephalomyelitis by suppression of pro-inflammatory cytokines. Int J Neuropsychopharmacol 1:1–12Google Scholar
  44. White SR, Bhatnagar RK, Bardo MT (1983) Norepinephrine depletion in the spinal cord gray matter of rats with experimental allergic encephalomyelitis. J Neurochem 40:1771–1773CrossRefPubMedGoogle Scholar
  45. Wiegmann K, Muthyala S, Kim DH, Arnason BG, Chelmicka-Schorr E (1995) Beta-adrenergic agonists suppress chronic/relapsing experimental allergic encephalomyelitis (CREAE) in Lewis rats. J Neuroimmunol 56:201–206CrossRefPubMedGoogle Scholar
  46. Zeinstra E, Wilczak N, De Keyser J (2000) [3H]dihydroalprenolol binding to beta adrenergic receptors in multiple sclerosis brain. Neurosci Lett 289:75–77CrossRefPubMedGoogle Scholar
  47. Zoukos Y, Leonard JP, Thomaides T, Thompson AJ, Cuzner ML (1992) beta-Adrenergic receptor density and function of peripheral blood mononuclear cells are increased in multiple sclerosis: a regulatory role for cortisol and interleukin-1. Ann Neurol 31:657–662CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Maria Vittoria Simonini
    • 1
    • 2
  • Paul E. Polak
    • 1
    • 2
  • Anthony Sharp
    • 1
    • 2
  • Susan McGuire
    • 1
    • 2
  • Elena Galea
    • 1
    • 2
  • Douglas L. Feinstein
    • 1
    • 2
    • 3
  1. 1.Department of AnesthesiologyUniversity of Illinois at ChicagoChicagoUSA
  2. 2.Department of Veterans AffairsJesse Brown VA HospitalChicagoUSA
  3. 3.ChicagoUSA

Personalised recommendations