Advertisement

Journal of Neuroimmune Pharmacology

, Volume 2, Issue 3, pp 270–275 | Cite as

NAD+ and NADH in Neuronal Death

  • Weihai YingEmail author
Invited Review

Abstract

Neuronal death is a key pathological event in multiple neurological diseases. Increasing evidence has suggested that NAD+ and NADH mediate not only energy metabolism and mitochondrial functions, but also calcium homeostasis, aging, and cell death. This article is written to provide an overview about the information suggesting significant roles of NAD+ and NADH in neuronal death in certain neurological diseases. Our latest studies have suggested that intranasal administration with NAD+ can profoundly decrease ischemic brain damage. These observations suggest that NAD+ administration may be a novel therapeutic strategy for some neurological diseases.

Keywords

NAD+ NADH neuronal death brain injury cerebral ischemia neurodegenerative diseases 

Notes

Acknowledgment

The author would like to acknowledge the grant support from NIH, VA, and AHA. The author would also like to thank the work of the current and previous members of his laboratory, including Dr. Guangwei Wei, Dr. Huafei Lu, Dr. Peng Zhang, and Mrs. Dongming Wang.

References

  1. Alano CC, Ying W, Swanson RA (2004) Poly(ADP-ribose) polymerase-1-mediated cell death in astrocytes requires NAD+ depletion and mitochondrial permeability transition. J Biol Chem 279:18895–18902PubMedCrossRefGoogle Scholar
  2. Araki T, Sasaki Y, Milbrandt J (2004) Increased nuclear NAD biosynthesis and SIRT1 activation prevent axonal degeneration. Science 305:1010–1013PubMedCrossRefGoogle Scholar
  3. Bakondi E, Bai P, Erdelyi K, Szabo C, Gergely P, Virag L (2004) Cytoprotective effect of gallotannin in oxidatively stressed HaCaT keratinocytes: the role of poly(ADP-ribose) metabolism. Exp Dermatol 13:170–178PubMedCrossRefGoogle Scholar
  4. Beal MF (2004) Mitochondrial dysfunction and oxidative damage in Alzheimer’s and Parkinson’s diseases and coenzyme Q10 as a potential treatment. J Bioenerg Biomembr 36:381–386PubMedCrossRefGoogle Scholar
  5. Berger NA (1985) Poly(ADP-ribose) in the cellular response to DNA damage. Radiat Res 101:4–15PubMedCrossRefGoogle Scholar
  6. Birkmayer JG, Vrecko C, Volc D, Birkmayer W (1993) Nicotinamide adenine dinucleotide (NADH)—a new therapeutic approach to Parkinson’s disease. Comparison of oral and parenteral application. Acta Neurol Scand Suppl 146:32–35PubMedGoogle Scholar
  7. Blander G, Guarente L (2004) The Sir2 family of protein deacetylases. Annu Rev Biochem 73:417–435PubMedCrossRefGoogle Scholar
  8. Blenn C, Althaus FR, Malanga M (2006) Poly(ADP-ribose) glycohydrolase silencing protects against H2O2-induced cell death. Biochem J 396:419–429Google Scholar
  9. Boulares AH, Zoltoski AJ, Sherif ZA, Yakovlev AG, Smulson ME (2002) The poly(ADP-ribose) polymerase-1-regulated endonuclease DNAS1L3 is required for etoposide-induced internucleosomal DNA fragmentation and increases etoposide cytotoxicity in transfected osteosarcoma cells. Cancer Res 62:4439–4444PubMedGoogle Scholar
  10. Burns D, Ying W, Garnier P, Swanson RA (2004) Decreases expression of the full-length poly(ADP-ribose) glycohydrolase by antisense oligonucleotide treatment prevents PARP-1-mediated astrocyte death. 2004 American Society for Neurosciences Annual Meeting Abstracts.Google Scholar
  11. Cecchi C, Fiorillo C, Sorbi S, Latorraca S, Nacmias B, Bagnoli S, Nassi P, Liguri G (2002) Oxidative stress and reduced antioxidant defenses in peripheral cells from familial Alzheimer’s patients. Free Radic Biol Med 33:1372–1379PubMedCrossRefGoogle Scholar
  12. Coleman M (2005) Axon degeneration mechanisms: commonality amid diversity. Nat Rev Neurosci 6:889–898PubMedCrossRefGoogle Scholar
  13. Corda D, Di Girolamo M (2003) Functional aspects of protein mono-ADP-ribosylation. EMBO J 22:1953–1958PubMedCrossRefGoogle Scholar
  14. Cosi C, Colpaert F, Koek W, Degryse A, Marien M (1996) Poly(ADP-ribose) polymerase inhibitors protect against MPTP-induced depletions of striatal dopamine and cortical noradrenaline in C57B1/6 mice. Brain Res 729:264–269PubMedGoogle Scholar
  15. Cuzzocrea S, Di Paola R, Mazzon E, Cortes U, Genovese T, Muia C, Li W, Xu W, Li JH, Zhang J, Wang ZQ (2005) PARG activity mediates intestinal injury induced by splanchnic artery occlusion and reperfusion. FASEB J 19:558–566PubMedCrossRefGoogle Scholar
  16. Cuzzocrea S, Wang ZQ (2005) Role of poly(ADP-ribose) glycohydrolase (PARG) in shock, ischemia and reperfusion. Pharmacol Res 52:100–108PubMedCrossRefGoogle Scholar
  17. D’Amours D, Desnoyers S, D’Silva I, Poirier GG (1999) Poly(ADP-ribosyl)ation reactions in the regulation of nuclear functions. Biochem J 342:249–268PubMedCrossRefGoogle Scholar
  18. Davidovic L, Vodenicharov M, Affar EB, Poirier GG (2001) Importance of poly(ADP-ribose) glycohydrolase in the control of poly(ADP-ribose) metabolism. Exp Cell Res 268:7–13PubMedCrossRefGoogle Scholar
  19. Demarin V, Podobnik SS, Storga-Tomic D, Kay G (2004) Treatment of Alzheimer’s disease with stabilized oral nicotinamide adenine dinucleotide: a randomized, double-blind study. Drugs Exp Clin Res 30:27–33PubMedGoogle Scholar
  20. Di Girolamo M, Dani N, Stilla A, Corda D (2005) Physiological relevance of the endogenous mono(ADP-ribosyl)ation of cellular proteins. FEBS J 272:4565–4575PubMedCrossRefGoogle Scholar
  21. Diestel A, Aktas O, Hackel D, Hake I, Meier S, Raine CS, Nitsch R, Zipp F, Ullrich O (2003) Activation of microglial poly(ADP-ribose)-polymerase-1 by cholesterol breakdown products during neuroinflammation: a link between demyelination and neuronal damage. J Exp Med 198:1729–1740PubMedCrossRefGoogle Scholar
  22. Du L, Zhang X, Han YY, Burke NA, Kochanek PM, Watkins SC, Graham SH, Carcillo JA, Szabo C, Clark RS (2003) Intra-mitochondrial poly(ADP-ribosylation) contributes to NAD+ depletion and cell death induced by oxidative stress. J Biol Chem 278:18426–18433PubMedCrossRefGoogle Scholar
  23. Eliasson MJ, Sampei K, Mandir AS, Hurn PD, Traystman RJ, Bao J, Pieper A, Wang ZQ, Dawson TM, Snyder SH, Dawson VL (1997) Poly(ADP-ribose) polymerase gene disruption renders mice resistant to cerebral ischemia. Nat Med 3:1089–1095PubMedCrossRefGoogle Scholar
  24. Endres M, Wang ZQ, Namura S, Waeber C, Moskowitz MA (1997) Ischemic brain injury is mediated by the activation of poly(ADP- ribose)polymerase. J Cereb Blood Flow Metab 17:1143–1151PubMedCrossRefGoogle Scholar
  25. Fonfria E, Marshall IC, Benham CD, Boyfield I, Brown JD, Hill K, Hughes JP, Skaper SD, McNulty S (2004) TRPM2 channel opening in response to oxidative stress is dependent on activation of poly(ADP-ribose) polymerase. Br J Pharmacol 143:186–192PubMedCrossRefGoogle Scholar
  26. Fonfria E, Marshall IC, Boyfield I, Skaper SD, Hughes JP, Owen DE, Zhang W, Miller BA, Benham CD, McNulty S (2005) Amyloid beta-peptide(1-42) and hydrogen peroxide-induced toxicity are mediated by TRPM2 in rat primary striatal cultures. J Neurochem 95:715–723PubMedCrossRefGoogle Scholar
  27. Goto S, Xue R, Sugo N, Sawada M, Blizzard KK, Poitras MF, Johns DC, Dawson TM, Dawson VL, Crain BJ, Traystman RJ, Mori S, Hurn PD (2002) Poly(ADP-ribose) polymerase impairs early and long-term experimental stroke recovery. Stroke 33:1101–1106PubMedCrossRefGoogle Scholar
  28. Hara MR, Thomas B, Cascio MB, Bae BI, Hester LD, Dawson VL, Dawson TM, Sawa A, Snyder SH (2006) Neuroprotection by pharmacologic blockade of the GAPDH death cascade. Proc Natl Acad Sci U S A 103:3887–3889PubMedCrossRefGoogle Scholar
  29. Hensley K, Butterfield DA, Hall N, Cole P, Subramaniam R, Mark R, Mattson MP, Markesbery WR, Harris ME, Aksenov M et al. (1996) Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s disease-associated amyloid beta peptide. Ann N Y Acad Sci 786:120–134PubMedCrossRefGoogle Scholar
  30. Hwang JJ, Choi SY, Koh JY (2002) The role of NADPH oxidase, neuronal nitric oxide synthase and poly(ADP ribose) polymerase in oxidative neuronal death induced in cortical cultures by brain-derived neurotrophic factor and neurotrophin-4/5. J Neurochem 82:894–902PubMedCrossRefGoogle Scholar
  31. Iwashita A, Yamazaki S, Mihara K, Hattori K, Yamamoto H, Ishida J, Matsuoka N, Mutoh S (2004) Neuroprotective effects of a novel poly(ADP-ribose) polymerase-1 inhibitor, 2-[3-[4-(4-chlorophenyl)-1-piperazinyl] propyl]-4(3H)-quinazolinone (FR255595), in an in vitro model of cell death and in mouse 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine model of Parkinson’s disease. J Pharmacol Exp Ther 309:1067–1078PubMedCrossRefGoogle Scholar
  32. Kauppinen TM, Chan WY, Suh SW, Wiggins AK, Huang EJ, Swanson RA (2006) Direct phosphorylation and regulation of poly(ADP-ribose) polymerase-1 by extracellular signal-regulated kinases 1/2. Proc Natl Acad Sci U S A 103:7136–7141PubMedCrossRefGoogle Scholar
  33. Kauppinen TM, Suh SW, Genain CP, Swanson RA (2005) Poly(ADP-ribose) polymerase-1 activation in a primate model of multiple sclerosis. J Neurosci Res 81:190–198PubMedCrossRefGoogle Scholar
  34. Keller JN, Guo Q, Holtsberg FW, Bruce-Keller AJ, Mattson MP (1998) Increased sensitivity to mitochondrial toxin-induced apoptosis in neural cells expressing mutant presenilin-1 is linked to perturbed calcium homeostasis and enhanced oxyradical production. J Neurosci 18:4439–4450PubMedGoogle Scholar
  35. Kim YH, Koh JY (2002) The role of NADPH oxidase and neuronal nitric oxide synthase in zinc-induced poly(ADP-ribose) polymerase activation and cell death in cortical culture. Exp Neurol 177:407–418PubMedCrossRefGoogle Scholar
  36. Kuhn W, Muller T, Winkel R, Danielczik S, Gerstner A, Hacker R, Mattern C, Przuntek H (1996) Parenteral application of NADH in Parkinson’s disease: clinical improvement partially due to stimulation of endogenous levodopa biosynthesis. J Neural Transm 103:1187–1193PubMedCrossRefGoogle Scholar
  37. Mandir AS, Przedborski S, Jackson-Lewis V, Wang ZQ, Simbulan-Rosenthal CM, Smulson ME, Hoffman BE, Guastella DB, Dawson VL, Dawson TM (1999) Poly(ADP-ribose) polymerase activation mediates 1-methyl-4-phenyl-1, 2,3,6-tetrahydropyridine (MPTP)-induced parkinsonism. Proc Natl Acad Sci U S A 96:5774–5779PubMedCrossRefGoogle Scholar
  38. Mandir AS, Simbulan-Rosenthal CM, Poitras MF, Lumpkin JR, Dawson VL, Smulson ME, Dawson TM (2002) A novel in vivo post-translational modification of p53 by PARP-1 in MPTP-induced parkinsonism. J Neurochem 83:186–192PubMedCrossRefGoogle Scholar
  39. Mhatre M, Floyd RA, Hensley K (2004) Oxidative stress and neuroinflammation in Alzheimer’s disease and amyotrophic lateral sclerosis: common links and potential therapeutic targets. J Alzheimers Dis 6:147–157PubMedGoogle Scholar
  40. Moreira PI, Honda K, Liu Q, Santos MS, Oliveira CR, Aliev G, Nunomura A, Zhu X, Smith MA, Perry G (2005) Oxidative stress: the old enemy in Alzheimer’s disease pathophysiology. Curr Alzheimer Res 2:403–408PubMedCrossRefGoogle Scholar
  41. Parker JA, Arango M, Abderrahmane S, Lambert E, Tourette C, Catoire H, Neri C (2005) Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet 37:349–350PubMedCrossRefGoogle Scholar
  42. Patel NS, Cortes U, Di Poala R, Mazzon E, Mota-Filipe H, Cuzzocrea S, Wang ZQ, Thiemermann C (2005) Mice lacking the 110-kD isoform of poly(ADP-ribose) glycohydrolase are protected against renal ischemia/reperfusion injury. J Am Soc Nephrol 16:712–719PubMedCrossRefGoogle Scholar
  43. Pillai JB, Isbatan A, Imai S, Gupta MP (2005) Poly(ADP-ribose) polymerase-1-dependent cardiac myocyte cell death during heart failure is mediated by NAD+ depletion and reduced Sir2alpha deacetylase activity. J Biol Chem 280:43121–43130PubMedCrossRefGoogle Scholar
  44. Przedborski S, Jackson-Lewis V, Djaldetti R, Liberatore G, Vila M, Vukosavic S, Almer G (2000) The parkinsonian toxin MPTP: action and mechanism. Restor Neurol Neurosci 16:135–142PubMedGoogle Scholar
  45. Virag L, Szabo C (2002) The therapeutic potential of poly(ADP-ribose) polymerase inhibitors. Pharmacol Rev 54:375–429PubMedCrossRefGoogle Scholar
  46. Wang J, Zhai Q, Chen Y, Lin E, Gu W, McBurney MW, He Z (2005) A local mechanism mediates NAD-dependent protection of axon degeneration. J Cell Biol 170:349–355PubMedCrossRefGoogle Scholar
  47. Wei G, Wang D, Zhang P, Ying W (2006) Intranasal delivery of gallotannin decreases ischemic brain damage in a rat model of transient focal ischemia with extended window of opportunity. 2006. 36th American Society for Neurosciences Annual Meeting AbstractsGoogle Scholar
  48. Wolozin B, Golts N (2002) Iron and Parkinson’s disease. Neuroscientist 8:22–32PubMedCrossRefGoogle Scholar
  49. Yakovlev AG, Wang G, Stoica BA, Boulares HA, Spoonde AY, Yoshihara K, Smulson ME (2000) A role of the Ca2+/Mg2+-dependent endonuclease in apoptosis and its inhibition by Poly(ADP-ribose) polymerase. J Biol Chem 275:21302–21308PubMedCrossRefGoogle Scholar
  50. Yang KT, Chang WL, Yang PC, Chien CL, Lai MS, Su MJ, Wu ML (2005) Activation of the transient receptor potential M2 channel and poly(ADP-ribose) polymerase is involved in oxidative stress-induced cardiomyocyte death. Cell Death Differ 13(10):1815–1826PubMedCrossRefGoogle Scholar
  51. Yang J, He L, Wang J, Adams JD, Jr (2004) Early administration of nicotinamide prevents learning and memory impairment in mice induced by 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine. Pharmacol Biochem Behav 78:179–183PubMedCrossRefGoogle Scholar
  52. Ying W (1996) A new hypothesis of neurodegenerative diseases: the deleterious network hypothesis. Med Hypotheses 47:307–313PubMedCrossRefGoogle Scholar
  53. Ying W (1997) Deleterious network hypothesis of aging. Med Hypotheses 48:143–148PubMedCrossRefGoogle Scholar
  54. Ying W (2006) NAD+ and NADH in cellular functions and cell death. Front Biosci 11:3129–3148PubMedCrossRefGoogle Scholar
  55. Ying W (2007) NAD+ and NADH in brain functions, brain diseases and brain aging. Front Biosci 12:1863–1888PubMedCrossRefGoogle Scholar
  56. Ying W, Alano CC, Garnier P, Swanson RA (2005) NAD+ as a metabolic link between DNA damage and cell death. J Neurosci Res 79:216–223PubMedCrossRefGoogle Scholar
  57. Ying W, Garnier P, Swanson RA (2003) NAD+ repletion prevents PARP-1-induced glycolytic blockade and cell death in cultured mouse astrocytes. Biochem Biophys Res Commun 308:809–813PubMedCrossRefGoogle Scholar
  58. Ying W, Sevigny MB, Chen Y, Swanson RA (2001) Poly(ADP-ribose) glycohydrolase mediates oxidative and excitotoxic neuronal death. Proc Natl Acad Sci U S A 98:12227–12232PubMedCrossRefGoogle Scholar
  59. Ying W, Swanson RA (2000) The poly(ADP-ribose) glycohydrolase inhibitor gallotannin blocks oxidative astrocyte death. Neuroreport 11:1385–1388PubMedCrossRefGoogle Scholar
  60. Ying W, Wei G, Wang D, Wang Q, Zhang P (2007) Intranasal administration with NAD+ profoundly decreases ischemic brain injury in a rat model of transient focal ischemia. Front Biosci 12:2728–2734PubMedCrossRefGoogle Scholar
  61. Zhang J, Dawson VL, Dawson TM, Snyder SH (1994) Nitric oxide activation of poly(ADP-ribose) synthetase in neurotoxicity. Science 263:687–689PubMedCrossRefGoogle Scholar
  62. Zhu X, Raina AK, Lee HG, Casadesus G, Smith MA, Perry G (2004) Oxidative stress signaling in Alzheimer’s disease. Brain Res 1000:32–39PubMedCrossRefGoogle Scholar
  63. Zhu K, Swanson RA, Ying W (2005) NADH can enter into astrocytes and block poly(ADP-ribose) polymerase-1-mediated astrocyte death. Neuroreport 16:1209–1212PubMedCrossRefGoogle Scholar
  64. Ziegler M (2000) New functions of a long-known molecule. Emerging roles of NAD in cellular signaling. Eur J Biochem 267:1550–1564PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  1. 1.Department of Neurology (127)University of California at San Francisco and San Francisco Veterans Affairs Medical CenterSan FranciscoUSA

Personalised recommendations