Effects of Excessive Screen Time on Neurodevelopment, Learning, Memory, Mental Health, and Neurodegeneration: a Scoping Review

Abstract

Evidence suggests that chronic sensory stimulation via excessive exposure to screen time may affect brain development in negative ways. Excessive smartphone use may increase the risk of cognitive, behavioral, and emotional disorders in adolescents and young adults that also has the potential to increase the risk of early onset dementia in late adulthood. This scoping review assessed theoretical and empirical evidence for the relationships between excessive screen time and (i) neurodevelopment, (ii) learning and memory, (iii) mental health, (iv) substance use disorders, and (v) neurodegeneration. Using Halas et al.’s (BMJ Open, 5(1), 1–6; 2015) five-stage scoping review methodology, we systematically identified articles meeting the following inclusion criteria: published in English between January 1999–July 2019; human or animal subjects; primary and secondary sources including original research, systematic reviews, meta-analyses, scoping reviews, and narrative reviews. Primary search terms focused on “smartphone,” “mental health,” “substance use,” “neurodevelopment,” and “neurodegeneration”; secondary search terms focused on “social media,” “anxiety,” “cannabis,” and “dementia”. We analyzed 44 articles across 16 countries in this review. Each article corresponded to one of four research questions investigating screen time and mental health (n = 13), mental health and substance use (n = 8), chronic stress and development (n = 14), and chronic stress and neurodegeneration (n = 9). Overall increased screen time is associated with negative outcomes such as lowered self-esteem, increased incidence and severity of mental health issues and addictions, slowed learning and acquisition, and an increased risk of premature cognitive decline. Future directions to better inform public policy should expand research methodologies and explore the prolonged effects of excessive screen time on cognition and mental health in diverse populations and contexts.

This is a preview of subscription content, access via your institution.

References

  1. Allcott, H., Braghieri, S., Eichmeyer, L., & Gentzkow, M. (2019). The welfare effects of social media. National Bureau of Economic Research, 25514 Retrieved from http://www.nber.org/papers/w25514.

  2. Alteba, S., Korem, N., & Akirav, I. (2016). Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood. Learning & Memory, 23(7), 349–358. https://doi.org/10.1101/lm.041608.116.

    CAS  Article  Google Scholar 

  3. American College of Pediatricians. (2016). The impact of media use and screen time on children, adolescents and families. Retrieved from: https://www.acpeds.org/wordpress/wp-content/uploads/11.9.16-The-Impact-of-Media-Use-and-Screen-Time-on-Children-updated-with-ref-64.pdf

  4. American Psychiatric Association. (2013). Substance-related and addictive disorders. In Diagnostic and Statistical Manual of Mental Disorders (5th ed.). https://doi.org/10.1176/appi.books.9780890425596.dsm16

  5. Arksey H, O'Malley L. (2005). Scoping studies: towards a methodological framework. Intternational Journal of Social Research Methodology, 8, 19–32

  6. Barnett, J., Hachinski, V., & Blackwell, A. (2013). Cognitive health begins at conception: addressing dementia as a lifelong and preventable condition. BMC Medicine, 11, 246–246. https://doi.org/10.1186/1741-7015-11-246.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Bergen, H. A., Martin, G., Roeger, L., & Allison, S. (2005). Perceived academic performance and alcohol, tobacco and marijuana use: longitudinal relationships in young community adolescents. Addictive Behaviors, 30(8), 1563–1573. https://doi.org/10.1016/j.addbeh.2005.02.012.

    Article  PubMed  Google Scholar 

  8. Christakis DA, Zimmerman FJ (2006). The Elephant in the Living Room: Make Television Work for Your Kids. Rodale, Emmaus, PA.

  9. Christakis, D., Ramirez, J., & Ramirez, J. (2012). Overstimulation of newborn mice leads to behavioral differences and deficits in cognitive performance. Scientific Reports, 2. https://doi.org/10.1038/srep00546.

  10. Christakis, D. A., Ramirez, J. S. B., Ferguson, S. M., Ravinder, S., & Ramirez, J. M. (2018). How early media exposure may affect cognitive function: a review of results from observations in humans and experiments in mice. Proceedings of the National Academy of Sciences, 115(40), 9851–9858. https://doi.org/10.1073/pnas.1711548115.

    CAS  Article  Google Scholar 

  11. Christakis, D., Zimmerman, F., DiGiuseppe, D., & McCarty, C. (2004). Early television exposure and subsequent attentional problems in children. Pediatrics, 113(4), 708–713. https://doi.org/10.1542/peds.113.4.708.

    Article  PubMed  Google Scholar 

  12. Clifford, J. R., & Holtzman, D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron, 80(6), 1347–1358. https://doi.org/10.1016/j.neuron.2013.12.003.

    CAS  Article  Google Scholar 

  13. Contractor, A., Frankfurt, S., Weiss, N., & Elhai, J. (2017). Latent-level relations between DSM-5 PTSD symptom clusters and problematic smartphone use. Computers in Human Behaviour, 72, 170–177. https://doi.org/10.1016/j.chb.2017.02.051.

    Article  Google Scholar 

  14. Darcin, A., Kose, S., Noyan, C., Nurmedov, S., Yilmaz, O., & Dilbaz, N. (2016). Smartphone addiction and its relationship with social anxiety and loneliness. Behaviour & Information Technology, 35(7), 520–525. https://doi.org/10.1080/0144929X.2016.1158319.

    Article  Google Scholar 

  15. Daudt, H. M., van Mossel, C., & Scott, S. J. (2013). Enhancing the scoping study methodology: a large, inter-professional team’s experience with Arksey and O’Malley’s framework. BMC Medical Research Methodology, 13, 48–48. https://doi.org/10.1186/1471-2288-13-48.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Davey, S., & Davey, A. (2014). Assessment of smartphone addiction in Indian adolescence: a mixed method study by systematic review and meta-analysis approach. International Journal of Preventative Medicine, 5(12), 1500–1511 PMC4336980.

    Google Scholar 

  17. Dey, M., Studer, J., Schaub, P., Gmel, G., Ebert, D., & Lee, J. (2019). Problematic smartphone use in young Swiss men: Its association with problematic substance use and risk factors derived from pathway model. Journal of Behavioural Addictions, 8(2), 326–334. https://doi.org/10.1556/2006.8.2019.17.

    Article  Google Scholar 

  18. Domenech-Abella, J., Mundo, J., Haro, J., & Rubio-Valera, M. (2019). Anxiety, depression, loneliness and social network in the elderly: longitudinal associations from The Irish Longitudinal Study on Ageing (TILDA). Journal of Affective Disorders, 1(246), 82–88. https://doi.org/10.1016/j.jad.2018.12.043.

    Article  Google Scholar 

  19. Emirtekin, E., Balta, S., Sural, İ., Kircaburun, K., Griffiths, M. D., & Billieux, J. (2019). The role of childhood emotional maltreatment and body image dissatisfaction in problematic smartphone use among adolescents. Psychiatry Research, 271(Complete), 634–639. https://doi.org/10.1016/j.psychres.2018.12.059.

    Article  PubMed  Google Scholar 

  20. Falck, R., Davis, J., & Lie-Ambrose, T. (2017). What is the association between sedentary behaviour and cognitive function? A systematic review. British Journal of Sports Medicine, 51(10), 800–811. https://doi.org/10.1136/bjsports-2015-095551.

    Article  PubMed  Google Scholar 

  21. Fredriksen, K., Rhodes, J., Reddy, R., & Way, N. (2004). Sleepless in Chicago: tracking the effects of adolescent sleep loss during the middle school years. Child Development, 75(1), 84–95. https://doi.org/10.1111/j.1467-8624.2004.00655.x.

    Article  PubMed  Google Scholar 

  22. Glass, A., & Kang, M. (2018). Dividing attention in the classroom reduces exam performance. Educational Psychology, 39(3), 395–408. https://doi.org/10.1080/01443410.2018.1489046.

    Article  Google Scholar 

  23. Global System for Mobile Communications (GSMA) (2018). The Mobile Economy 2018. GSMA Intelligence Reports. Retrieved from: https://www.gsma.com/mobileeconomy/wp-content/uploads/2018/05/The-Mobile-Economy-2018.pdf

  24. Gommans, R., Stevens, G., Finne, E., Cillessen, A., Boniel-Nissim, M., & ter Bogt, T. (2015). Frequent electronic media communication with friends is associated with higher adolescent substance use. PubMed, 60(2), 167–177. https://doi.org/10.1007/s00038-014-0624-0.

    Article  Google Scholar 

  25. Gough D. (2013). Meta-narrative and realist reviews: guidance, rules, publication standards and quality appraisal. BMC Medicine, 11:22.

  26. Gough, D., Thomas, J., & Oliver, S. (2012). Clarifying differences between review designs and methods. Systematic Reviews, 1(28). https://doi.org/10.1186/2046-4053-1-28.

  27. Green, A., Cohen-Zion, M., Haim, A., & Dagan, Y. (2017). Evening light exposure to computer screens disrupts human sleep, biological rhythms and attention abilities. Chronobiology International, 34(7), 855–865. https://doi.org/10.1080/07420528.2017.1324878.

    CAS  Article  PubMed  Google Scholar 

  28. Gutierrez, D. S., de Fonseca, F. R., & Rubio, G. (2016). Cell-phone addiction: a review. Frontiers in Psychiatry, 7(175). https://doi.org/10.3389/fpsyt.2016.00175.

  29. Halas, G., Schultz, A. S., Rothney, J., Goertzen, L., Wener, P., & Katz, A. (2015). A scoping review protocol to map the research foci trends in tobacco control over the last decade. BMJ Open, 5(1), 1–6. https://doi.org/10.1136/bmjopen-2014-006643.

    Article  Google Scholar 

  30. Hall, W., Degenhardt, L., & Teeson, M. (2009). Understanding comorbidity between substance use, anxiety and affective disorders: broadening the research base. Addictive Behaviours, 34(6-7), 526–530. https://doi.org/10.1016/j.addbeh.2009.03.010.

    Article  Google Scholar 

  31. He, Q., Turel, O., Brevers, D., & Bechara, A. (2017). Excess social media use in normal populations is associated with amygdala-striatal but not with prefrontal morphology. Psychiatry Research: Neuroimaging, 269, 31–35. https://doi.org/10.1016/j.pscychresns.2017.09.003.

    Article  PubMed  Google Scholar 

  32. Hong, S. B., Kim, J., Choi, E., Kim, H., Suh, J., Kim, C., Klauser, P., Whittle, S., Yucel, M., Pantelis, C., & Yi, S. (2013). Reduced orbitofrontal cortical thickness in male adolescents with internet addiction. Behavioral and Brain Functions, 9, 11–11. https://doi.org/10.1186/1744-9081-9-11.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Hussain, Z., & Griffiths, D. (2019). Problematic social networking site use and psychiatric disorders: a focused review of recent largescale studies. Frontiers in Psychiatry, 9, 686. https://doi.org/10.3389/fpsyt.2018.00686.

    Article  Google Scholar 

  34. Kuss, J., & Griffiths, D. (2011). Online social networking and addiction—a review of the psychological literature. International Journal of Environmental Research and Public Health, 8(9), 3528–3552. https://doi.org/10.3390/ijerph8093528.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee, L. (2018). Screen time changes structure of kids’ brains, ‘60 minutes’ says. Bloomberg Wire Service. Retrieved from https://libproxy.wlu.ca/login?url=https://search-proquest-com.libproxy.wlu.ca/docview/2153743397?accountid=15090

  36. Lepp, A., Barkley, J., & Karpinski. (2013). The relationship between cell phone use, academic performance, anxiety and satisfaction with life in college students. SAGE Open, 5(1), 1–9. https://doi.org/10.1177/2158244015573169.

    Article  Google Scholar 

  37. Linebarger, D., & Walker, D. (2005). Infants’ and toddlers’ television viewing and language outcomes. American Behavioral Scientist, 48(5), 624–645. https://doi.org/10.1177/0002764204271505.

    Article  Google Scholar 

  38. Long, E. C., Verhulst, B., Neale, M. C., Lind, P. A., Hickie, I. B., Martin, N. G., & Gillespie, N. A. (2016). The genetic and environmental contributions to internet use and associations with psychopathology: a twin study. Twin Research and Human Genetics, 19(1), 1–9. https://doi.org/10.1017/thg.2015.91.

    Article  PubMed  Google Scholar 

  39. Madigan, S., Browne, D., Racine, N., Mori, C., & Tough, S. (2019). Association between screen time and children’s performance on a developmental screening test. JAMA Pediatrics, 173(3), 244–250. https://doi.org/10.1001/jamapediatrics.2018.5056.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Maras, D., Flament, M., Murray, M., Buchholz, A., Henderson, K., Obeid, N., & Goldfield, G. (2015). Screen time is associated with depression and anxiety in Canadian youth. Preventive Medicine, 73(Complete), 133-138. https://doi.org/10.1016/j.ypmed.2015.01.029.

  41. Meshi, D., Elizarova, A., Bender, A., & Verdejo-Garcia, A. (2019). Excessive social media users demonstrate impaired decision making in the Iowa Gambling Task. Journal of Behavioural Addictions, 8(1), 169–173. https://doi.org/10.1556/2006.7.2018.138.

    Article  Google Scholar 

  42. Meshi, D., Tamir, D., & Heekeren, H. (2015). The emerging neuroscience of social media. Trends in Cognitive Sciences, 19(12), 771–782. https://doi.org/10.1016/j.tics.2015.09.004.

    Article  PubMed  Google Scholar 

  43. Minges, K. E., Salmon, J., Dunstan, D. W., Owen, N., Chao, A., & Whittemore, R. (2015). Reducing youth screen time: Qualitative meta-synthesis of findings on barriers and facilitators. Health Psychology, 34(4), 381–397. https://doi.org/10.1037/hea0000172.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Morena, M., Patel, S., Bains, J., & Hill, M. (2015). Neurobiological interactions between stress and endocannabinoid system. Neuropsychopharmacology, 41, 80–102. https://doi.org/10.1038/npp.2015.166.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. Montagni, I., Guichard, E., & Kurth, T. (2016). Association of screen time with self-perceived attention problems and hyperactivity levels in French students: a cross-sectional study. BMJ Open, 6(2), 1–8. https://doi.org/10.1136/bmjopen-2015-009089.

    Article  Google Scholar 

  46. Pigeon, W. R., Pinquart, M., & Conner, K. (2012). Meta-analysis of sleep disturbances and suicidal thoughts and behaviors. Journal of Clinical Psychology, 73(9), 1160–1170. https://doi.org/10.4088/JCP.11r07586.

    Article  Google Scholar 

  47. Purcell, K. (2013). 10 things to know about how teens use technology. Retrieved from https://www.pewinternet.org/2013/07/10/10-things-to-know-about-how-teens-use-technology/

  48. Selfhout, M., Branje, S., Delsing, M., ter Bogt, T., & Meeus, H. (2009). Different types of internet use, depression and social anxiety: the role of perceived friendship quality. Journal of Adolescence, 32(4), 819–833. https://doi.org/10.1016/j.adolescence.2008.10.011.

    Article  PubMed  Google Scholar 

  49. Shakya, B., & Christakis, N. (2017). Association of Facebook use with compromised well-being: a longitudinal study. American Journal of Epidemiology, 185(3), 203–211. https://doi.org/10.1093/aje/kww189.

    Article  PubMed  Google Scholar 

  50. Silver, L. (2019). Smartphone ownership is growing rapidly around the world, but not always equally. Pew Research Centre: Global Attitudes and Trends (February, 5). Retrieved from: https://www.pewresearch.org/global/2019/02/05/smartphone-ownership-is-growing-rapidly-around-the-world-but-not-always-equally/

  51. Twenge, J., & Campbell, W. (2018). Associations between screen time and lower psychological well-being among children and adolescents: evidence from a population-based study. Preventive Medicine Reports, 12, 271–283. https://doi.org/10.1016/j.pmedr.2018.10.003.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Twenge, J., Cooper, A., Joiner, T., Duffy, M., & Binau, S. (2019). Age, period, and cohort trends in mood disorder indicators and suicide- related outcomes in a nationally representative dataset, 2005–2017. Journal of Abnormal Psychology, 128(3), 185–199. https://doi.org/10.1037/abn0000410.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Wedekind, D., Bandelow, B., Heitmann, S., Havemann-Reinecke, U., Engel, K., & Huether, G. (2013). Attachment style, anxiety coping, and personality-styles in withdrawn alcohol addicted inpatients. Substance Abuse Treatment, Prevention, and Policy, 8, 1–1. https://doi.org/10.1186/1747-597X-8-1.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Yen, J. Y., Yen, C. F., Chen, C. S., Tang, T. C., & Ko, C. (2009). The association between adult ADHD symptoms and internet addiction among college students: the gender difference. CyberPsychology & Behaviour, 12(2), 187–191. https://doi.org/10.1089/cpb.2008.0113.

    Article  Google Scholar 

  55. Zimmerman, F. J., Christakis, A. D., & Meltzoff, A. N. (2007). Television and DVD/video viewing in children younger than 2 years. Archives of Adolescent and Pediatric Medicine, 161(5), 473–479. https://doi.org/10.1001/archpedi.161.5.473.

    Article  Google Scholar 

  56. Zunzuneegui, M. V., Alvardo, B., Del Ser, T., & Otero, A. (2003). Social networks, social integration and social engagement determine cognitive decline in community-dwelling Spanish older adults. The Journals of Gerontology, 58(2), 93–100. https://doi.org/10.1093/geronb/58.2.S93.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Laurie A. Manwell.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Neophytou, E., Manwell, L.A. & Eikelboom, R. Effects of Excessive Screen Time on Neurodevelopment, Learning, Memory, Mental Health, and Neurodegeneration: a Scoping Review. Int J Ment Health Addiction 19, 724–744 (2021). https://doi.org/10.1007/s11469-019-00182-2

Download citation

Keywords

  • Screen time
  • Mental health
  • Social networking sites
  • Neurodegeneration
  • Substance use