Skip to main content

Assessing Internet Addiction Using the Parsimonious Internet Addiction Components Model—A Preliminary Study

Abstract

Internet usage has grown exponentially over the last decade. Research indicates that excessive Internet use can lead to symptoms associated with addiction. To date, assessment of potential Internet addiction has varied regarding populations studied and instruments used, making reliable prevalence estimations difficult. To overcome the present problems a preliminary study was conducted testing a parsimonious Internet addiction components model based on Griffiths’ addiction components (Journal of Substance Use, 10, 191–197, 2005), including salience, mood modification, tolerance, withdrawal, conflict, and relapse. Two validated measures of Internet addiction were used (Compulsive Internet Use Scale [CIUS], Meerkerk et al. in Cyberpsychology & Behavior, 12(1), 1–6, 2009, and Assessment for Internet and Computer Game Addiction Scale [AICA-S], Wölfling et al. 2010) in two independent samples (ns = 3,105 and 2,257). The fit of the model was analysed using Confirmatory Factor Analysis. Results indicate that the Internet addiction components model fits the data in both samples well. The two sample/two instrument approach provides converging evidence concerning the degree to which the components model can organize the self-reported behavioural components of Internet addiction. Recommendations for future research include a more detailed assessment of tolerance as addiction component.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Aboujaoude, E., Koran, L. M., Gamel, N., Large, M. D., & Serpe, R. T. (2006). Potential markers for problematic Internet use: a telephone survey of 2,513 adults. Cns Spectrums, 11(10), 750–755.

    PubMed  Google Scholar 

  2. American Psychiatric Association. (2012). DSM-5: The future of psychiatric diagnosis. DSM-5 development. Retrieved 28.04.2012, from http://www.dsm5.org/Pages/Default.aspx.

  3. American Psychiatric Association. (2000). Diagnostic and statistical manual for mental disorders IV, text-revision. Washington: American Psychiatric Association.

    Google Scholar 

  4. American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). Arlington: American Psychiatric Association.

    Google Scholar 

  5. Andreassen, C. S., Griffiths, M. D., Hetland, J., & Pallesen, S. (2012a). Development of a work addiction scale. Scandinavian Journal of Psychology, 53(3), 265–272.

    PubMed  Article  Google Scholar 

  6. Andreassen, C. S., Torsheim, T., Brunborg, G. S., & Pallesen, S. (2012b). Development of a Facebook addiction scale. Psychological Reports, 110(2), 1–17.

    Article  Google Scholar 

  7. Andrews-Hanna, J. R., Mackiewicz Seghete, K. L., Claus, E. D., Burgess, G. C., Ruzic, L., & Banich, M. T. (2011). Cognitive control in adolescence: neural underpinnings and relation to self-report behaviors. Plos One, 6(6), e21598.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  8. Armstrong, L., Phillips, J. G., & Saling, L. L. (2000). Potential determinants of heavier internet usage. International Journal of Human-Computer Studies, 53(4), 537–550.

    Article  Google Scholar 

  9. Beard, K. W. (2005). Internet addiction: a review of current assessment techniques and potential assessment questions. Cyberpsychology & Behavior, 8(1), 7–14.

    Article  Google Scholar 

  10. Blaszczynski, A. (2006). Internet use: in search of an addiction. International Journal of Mental Health and Addiction, 4, 7–9.

    Article  Google Scholar 

  11. Blum, K., Cull, J. G., Braverman, E. R., & Comings, D. E. (1996). Reward deficiency syndrome. American Scientist, 84(2), 132–145.

    Google Scholar 

  12. Boomsma, A. (2000). Reporting analyses of covariance structures. Structural Equation Modeling—A Multidisciplinary Journal, 7(3), 461–483.

    Article  Google Scholar 

  13. Brown, T. A. (2006). Confirmatory factor analysis for applied research. New York: Guilford.

    Google Scholar 

  14. Cao, H., Sun, Y., Wan, Y., Hao, J., & Tao, F. (2011). Problematic Internet use in Chinese adolescents and its relation to psychosomatic symptoms and life satisfaction. Bmc Public Health, 11.

  15. Christakis, D. A. (2010). Internet addiction: a 21st century epidemic? Bmc Medicine, 8(61).

  16. Clark, M., & Calleja, K. (2008). Shopping addiction: a preliminary investigation among Maltese university students. Addiction Research & Theory, 16(6), 633–649.

    Article  Google Scholar 

  17. Cohen, J. (1992). A power primer. Psychological Bulletin, 112(1), 155–159.

    CAS  PubMed  Article  Google Scholar 

  18. Conner, B. T., Stein, J. A., Longshore, D., & Stacy, A. W. (1999). Associations between drug abuse treatment and cigarette use: evidence of substance replacement. Experimental and Clinical Psychopharmacology, 7(1), 64–71.

    CAS  PubMed  Article  Google Scholar 

  19. Dong, G., Zhou, H., & Zhao, X. (2011). Male Internet addicts show impaired executive control ability: evidence from a color-word Stroop task. Neuroscience Letters, 499(2), 114–118.

    CAS  PubMed  Article  Google Scholar 

  20. El-Guebaly, N., Patten, S. B., Currie, S., Williams, J. V. A., Beck, C. A., Maxwell, C. J., et al. (2006). Epidemiological associations between gambling behavior, substance use & mood and anxiety disorders. Journal of Gambling Studies, 22(3), 275–287.

    PubMed  Article  Google Scholar 

  21. Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9(4), 466–491.

    PubMed Central  PubMed  Article  Google Scholar 

  22. Glasner-Edwards, S., & Rawson, R. (2010). Evidence-based practices in addiction treatment: review and recommendations for public policy. Health Policy, 97(2–3), 93–104.

    PubMed Central  PubMed  Article  Google Scholar 

  23. Gray, L., Thomas, N., & Lewis, L. (2010). Teachers’ use of educational technology in U.S. public schools: 2009 (NCES 2010-040). Washington: National Center for Education Statistics, Institute of Education Sciences, U.S. Department of Education.

    Google Scholar 

  24. Griffiths, M. (1993). Tolerance in gambling: an objective measure using the psychophysiological analysis of male fruit machine gamblers. Addictive Behaviors, 18, 365–372.

    CAS  PubMed  Article  Google Scholar 

  25. Griffiths, M. D. (2005). A “components” model of addiction within a biopsychosocial framework. Journal of Substance Use, 10, 191–197.

    Article  Google Scholar 

  26. Griffiths, M. D. (2010). The use of online methodologies in data collection. International Journal of Mental Health and Addiction, 8(1), 8–20.

    Article  Google Scholar 

  27. Griffiths, M. D., Szabo, A., & Terry, A. (2005). The exercise addiction inventory: a quick and easy screening tool for health practitioners. British Journal of Sports Medicine, 39(6), e30.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  28. Hayduk, L. A., & Glaser, D. N. (2000). Jiving the four-step, waltzing around factor analysis, and other serious fun. Structural Equation Modeling, 7(1), 1–35.

    Article  Google Scholar 

  29. Hellman, M., Schoenmakers, T. M., Nordstrom, B. R., & Van Holst, R. J. (2012). Is there such a thing as online video game addiction? A cross-disciplinary review. Addiction Research & Theory, (online first).

  30. Hooper, D., Coughlan, J., & Mullen, M. R. (2008). Structural equation modelling: guidelines for determining model fit. Electronic Journal of Business Research Methods, 6(1), 53–60.

    Google Scholar 

  31. Hu, L. T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Structural Equation Modeling—A Multidisciplinary Journal, 6(1), 1–55.

    Article  Google Scholar 

  32. International Telecommunication Union. (2012). Internet users. Retrieved 21.11.2012, from http://www.itu.int/ITU-D/ict/statistics/index.html.

  33. Jöreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL. Scientific Software International. from www.ssicentral.com/lisrel/techdocs/ordinal.pdf.

  34. Kaltiala-Heino, R., Lintonen, T., & Rimpela, A. (2004). Internet addiction? Potentially problematic use of the Internet in a population of 12–18 year-old adolescents. Addiction Research & Theory, 12(1), 89–96.

    Article  Google Scholar 

  35. King, D. L., & Delfabbro, P. H. (2013). Video-gaming disorder and the DSM-5: some further thoughts. Australian and New Zealand Journal of Psychiatry, 47(9), 875–876.

    PubMed  Article  Google Scholar 

  36. Ko, C. H., Yen, J. Y., Chen, C. S., Yeh, Y. C., & Yen, C. F. (2009). Predictive values of psychiatric symptoms for Internet addiction in adolescents: a 2-year prospective study. Archives of Pediatrics & Adolescent Medicine, 163(10), 937–943.

    Article  Google Scholar 

  37. Koob, G. F., & Le Moal, M. (1997). Drug abuse: hedonic homeostatic dysregulation. Science, 278(5335), 52–58.

    CAS  PubMed  Article  Google Scholar 

  38. Koob, G. F., & Le Moal, M. (2001). Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology, 24, 97–129.

    CAS  PubMed  Article  Google Scholar 

  39. Kuss, D. J. (2012). Substance and behavioral addictions: beyond dependence. Journal of Addiction Research and Therapy, S6, e001.

    Google Scholar 

  40. Kuss, D. J., & Griffiths, M. D. (2012a). Internet and gaming addiction: a systematic literature review of neuroimaging studies. Brain Sciences, 2, 347–374.

    Article  Google Scholar 

  41. Kuss, D. J., & Griffiths, M. D. (2012b). Internet gaming addiction: a systematic review of empirical research. International Journal of Mental Health and Addiction, 10(2), 278–296.

    Article  Google Scholar 

  42. Kuss, D. J., Griffiths, M. D., & Binder, J. F. (2013a). Internet addiction in students: prevalence and risk factors. Computers in Human Behavior, 29(3), 959–966.

    Article  Google Scholar 

  43. Kuss, D. J., van Rooij, A., Shorter, G. W., Griffiths, M. D., & van de Mheen, D. (2013b). Internet addiction in adolescents: prevalence and risk factors. Computers in Human Behavior, 29(5), 1987–1996.

    Article  Google Scholar 

  44. Larkin, M., & Griffiths, M. D. (2002). Experiences of addiction and recovery: the case for subjective accounts. Addiction Research & Theory, 10(3), 281–311.

    Article  Google Scholar 

  45. Lemmens, J. S., Valkenburg, P. M., & Peter, J. (2009). Development and validation of a game addiction scale for adolescents. Media Psychology, 12(1), 77–95.

    Article  Google Scholar 

  46. Leung, L., & Lee, P. S. N. (2012). Impact of Internet literacy, Internet addiction symptoms, and Internet activities on academic performance. Social Science Computer Review, 30(4), 403–418.

    Article  Google Scholar 

  47. Lin, F., Zhou, Y., Du, Y., Qin, L., Zhao, Z., Xu, J., et al. (2012). Abnormal white matter integrity in adolescents with Internet Addiction Disorder: a tract-based spatial statistics study. Plos One, 7(1), e30253.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  48. Littel, M., Luijten, M., van den Berg, I., van Rooij, A., Keemink, L., & Franken, I. (2012). Error-processing and response inhibition in excessive computer game players: an ERP study. Addiction Biology, 17(5), 934–947.

    PubMed  Article  Google Scholar 

  49. Little, R. J. A., & Rubin, D. B. (2002). Statistical analysis with missing data. New York: Wiley & Sons.

    Google Scholar 

  50. Liu, C.-Y., & Kuo, F.-Y. (2007). A study of Internet addiction through the lens of the interpersonal theory. Cyberpsychology & Behavior, 10(6), 799–804.

    Article  Google Scholar 

  51. Liu, J., Gao, X. P., Osunde, I., Li, X., Zhou, S. K., Zheng, H. R., et al. (2010). Increased regional homogeneity in internet addiction disorder: a resting state functional magnetic resonance imaging study. Chinese Medical Journal, 123(14), 1904–1908.

    PubMed  Google Scholar 

  52. Lopez-Moreno, J. A., Gonzalez-Cuevas, G., Moreno, G., & Navarro, M. (2008). The pharmacology of the endocannabinoid system: functional and structural interactions with other neurotransmitter systems and their repercussions in behavioral addiction. Addiction Biology, 13(2), 160–187.

    CAS  PubMed  Article  Google Scholar 

  53. MacCallum, R. C. (1986). Specification searches in covariance structure modeling. Psychological Bulletin, 100(1), 107–120.

    Article  Google Scholar 

  54. McLellan, A. T., & Meyers, K. (2004). Contemporary addiction treatment: a review of systems problems for adults and adolescents. Biological Psychiatry, 56(10), 764–770.

    PubMed  Article  Google Scholar 

  55. Meerkerk, G. J., Van Den Eijnden, R. J., Vermulst, A. A., & Garretsen, H. F. L. (2009). The Compulsive Internet Use Scale (CIUS): some psychometric properties. Cyberpsychology & Behavior, 12(1), 1–6.

    Article  Google Scholar 

  56. Müller, K. W., Ammerschläger, M., Freisleder, F. J., Beutel, M. E., & Wölfling, K. (2012). Addictive Internet use as a comorbid disorder among clients of an adolescent psychiatry—prevalence and psychopathological symptoms. [Suchtartige Internetnutzung als komorbide Störung im jugendpsychiatrischen Setting.]. Zeitschrift für Kinder- und Jugendpsychiatrie und Psychotherapie, 40(5), 331–339.

    PubMed  Article  Google Scholar 

  57. Murali, V., & George, S. (2007). Lost online: an overview of internet addiction. Advances in Psychiatric Treatment, 13(1), 24–30.

    Article  Google Scholar 

  58. Muthén, L. K. (2012). Model fit index WRMR. Retrieved 23.11.2012, from http://www.statmodel.com/discussion/messages/9/5096.html?1321986275.

  59. Muthén, B., & Asparouhov, T. (2002). Latent variable analysis with categorical outcomes: Multiple-group and growth modeling in Mplus. Unpublished manuscript. Retrieved 22.11.2012, from https://www.statmodel.com/download/webnotes/CatMGLong.pdf.

  60. Muthén, L. K., & Muthén, B. O. (2011). Mplus user’s guide (6th ed.). Los Angeles: Muthén & Muthén.

    Google Scholar 

  61. Nichols, L. A., & Nicki, R. (2004). Development of a psychometrically sound Internet addiction scale: a preliminary step. Psychology of Addictive Behaviors, 18(4), 381–384.

    PubMed  Article  Google Scholar 

  62. Niemz, K., Griffiths, M., & Banyard, P. (2005). Prevalence of pathological Internet use among university students and correlations with self-esteem, the general health questionnaire (GHQ), and disinhibition. Cyberpsychology & Behavior, 8(6), 562–570.

    Article  Google Scholar 

  63. Paulhus, D. L., & Vazire, S. (2009). The self-report method. In R. W. Robins, R. C. Fraley, & R. F. Krueger (Eds.), Handbook or research methods in personality psychology (pp. 224–239). New York: Guilford.

    Google Scholar 

  64. Pies, R. (2009). Should DSM-V designate “Internet addiction” a mental disorder? Psychiatry, 6(2), 31–37.

    PubMed Central  PubMed  Google Scholar 

  65. Rumpf, H. J., Meyer, C., Kreuzer, A., & John, U. (2011). Prävalenz der Internetabhängigkeit (PINTA). Bericht an das Bundesministerium für Gesundheit. Greifswald: Universität zu Lübeck, Universitätsmedizin Greifswald.

    Google Scholar 

  66. Shaffer, H. J., Hall, M. N., & Vander Bilt, J. (2000). “Computer addiction”: a critical consideration. American Journal of Orthopsychiatry, 70(2), 162–168.

    CAS  PubMed  Article  Google Scholar 

  67. Shaffer, H. J., LaPlante, D. A., LaBrie, R. A., Kidman, R. C., Donato, A. N., & Stanton, M. V. (2004). Toward a syndrome model of addiction: multiple expressions, common etiology. Harvard Review of Psychiatry, 12(6), 367–374.

    PubMed  Article  Google Scholar 

  68. Smith, G. W., Farrell, M., Bunting, B. P., Houston, J. E., & Shevlin, M. (2001). Patterns of polydrug use in Great Britian: findings from a national household population survey. Drug and Alcohol Dependence, 113(2–3), 222–228.

    Google Scholar 

  69. Solomon, R. L. (1980). The opponent-process theory of acquired motivation: the costs of pleasure and the benefits of pain. American Psychologist, 35(8), 691–712.

    CAS  PubMed  Article  Google Scholar 

  70. Starcevic, V. (2013). Video-gaming disorder and behavioural addictions. Australian and New Zealand Journal of Psychiatry, 47(3), 285–286.

    PubMed  Article  Google Scholar 

  71. Steiger, J. H. (2000). Point estimation, hypothesis testing, and interval estimation using the RMSEA: some comments and a reply to Hayduk and Glaser. Structural Equation Modeling, 7(2), 149–162.

    Article  Google Scholar 

  72. Steiger, J. H. (2007). Understanding the limitations of global fit assessment in structural equation modeling. Personality & Individual Differences, 42(5), 893–898.

    Article  Google Scholar 

  73. Treuer, T., Fabian, Z., & Furedi, J. (2001). Internet addiction associated with features of impulse control disorder: is it a real psychiatric disorder? Journal of Affective Disorders, 66(2–3), 283–283.

    CAS  PubMed  Article  Google Scholar 

  74. Tsai, C. C., & Lin, S. S. J. (2003). Internet addiction of adolescents in Taiwan: an interview study. Cyberpsychology & Behavior, 6(6), 649–652.

    Article  Google Scholar 

  75. van Rooij, A. J., Schoenmakers, T. M., Vermulst, A. A., van den Eijnden, R. J. J. M., & van de Mheen, D. (2011). Online video game addiction: identification of addicted adolescent gamers. Addiction, 106(1), 205–212.

    PubMed  Article  Google Scholar 

  76. Volkow, N. D., Fowler, J. S., & Wang, G. J. (2003). The addicted human brain: insights from imaging studies. Journal of Clinical Investigation, 111(10), 1444–1451.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  77. Volkow, N. D., Fowler, J. S., Wang, G.-J., Swanson, J. M., & Telang, F. (2007). Dopamine in drug abuse and addiction—results of imaging studies and treatment implications. Archives of Neurology, 64(11), 1575–1579.

    PubMed  Article  Google Scholar 

  78. Wölfling, K., Müller, K., & Beutel, M. (2010). Diagnostic measures: Scale for the assessment of internet and computer game addiction (AICA-S). In D. Mücken, A. Teske, F. Rehbein, & B. te Wildt (Eds.), Prevention, diagnostics, and therapy of computer game addiction (pp. 212–215). Lengerich: Pabst Science.

    Google Scholar 

  79. World Health Organization. (1992). ICD 10: The ICD-10 classification of mental and behavioral disorders: Clinical descriptions and diagnostic guidelines. Geneva: World Health Organization.

    Google Scholar 

  80. Yen, J. Y., Ko, C. H., Yen, C. F., Wu, H. Y., & Yang, M. J. (2007). The comorbid psychiatric symptoms of Internet addiction: attention deficit and hyperactivity disorder (ADHD), depression, social phobia, and hostility. Journal of Adolescent Health, 41(1), 93–98.

    PubMed  Article  Google Scholar 

  81. Young, K. (1999). Internet addiction: Symptoms, evaluation, and treatment. In L. V. T. L. Jackson (Ed.), Innovations in clinical practice. Sarasota: Professional Resource Press.

    Google Scholar 

  82. Young, K. S. (2004). Internet addiction—a new clinical phenomenon and its consequences. American Behavioral Scientist, 48(4), 402–415.

    Article  Google Scholar 

  83. Young, K. (2010). Internet addiction over the decade: a personal look back. World Psychiatry, 9(2), 91–91.

    PubMed Central  PubMed  Google Scholar 

  84. Yu, C. F. (2002). Evaluating cutoff criteria of model fit indices for latent variable models with binary and continuous outcomes. Dissertation. University of California. Los Angeles. Retrieved from http://statmodel2.com/download/Yudissertation.pdf.

  85. Yuen, C. N., & Lavin, M. J. (2004). Internet dependence in the collegiate population: the role of shyness. Cyberpsychology & Behavior, 7(4), 379–383.

    Article  Google Scholar 

Download references

Conflict of Interest

The authors report no conflicts of interest.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Daria J. Kuss.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kuss, D.J., Shorter, G.W., van Rooij, A.J. et al. Assessing Internet Addiction Using the Parsimonious Internet Addiction Components Model—A Preliminary Study. Int J Ment Health Addiction 12, 351–366 (2014). https://doi.org/10.1007/s11469-013-9459-9

Download citation

Keywords

  • Internet addiction
  • Behavioural addiction
  • Addiction components
  • Classification
  • Diagnosis