Skip to main content
Log in

The Double-Layer Graphene Surface Plasmon-Polaritons Spectrum in Hydrodynamic Model

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The spectrum of surface plasmon polaritons in double-layer graphene with and without an external magnetic field by utilizing Maxwell’s equations in a hydrodynamic model was studied and field configurations were analyzed. There is neither a transverse magnetic (TM) mode nor a transverse electric (TE) mode but a full-field mode under the external field. Regardless of the presence or absence of an external field, the excited transverse magnetic field is symmetrical in the acoustic branch, whereas it is antisymmetrical in the optical branch. Meanwhile, the excited transverse electric field has opposite symmetry properties against to that of the transverse magnetic field. The results indicate that the rise of the spectrum is dominated by an external magnetic field in the infrared region and a non-local effect in the ultraviolet region. The influence of the layer distance on the spectrum was also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D Appl Phys 45(11):113001

    Article  Google Scholar 

  2. Shkerdin G, Alkorre H, Stiens J et al (2015) Coupled TM surface plasmon features of graphene-metal layered structure in the sub-THz frequency range. J Opt 17(4):045003

    Article  Google Scholar 

  3. Monticone F (2020) A truly one-way lane for surface plasmon polaritons. Nat Photonics 14(8):461–465

    Article  CAS  Google Scholar 

  4. Ratnikov PV (2020) Surface plasmon polaritons in planar graphene superlattices. Phys Rev B 101(12):125301

    Article  CAS  Google Scholar 

  5. Zhu S, Wang B, Guo B (2020) Dispersion relation of graphene surface plasmon by using a quantum hydrodynamic model. Superlattices Microstruct 142:106516

    Article  CAS  Google Scholar 

  6. Dompreh KA, Mensah SY, Abukari SS et al (2016) Amplification of acoustic waves in armchair graphene nanoribbon in the presence of external electric and magnetic fields. Physica E 83:420–425

    Article  CAS  Google Scholar 

  7. Kuzmin D, Bychkov I, Shavrov V (2015) Electromagnetic waves absorption by graphene-magnetic semiconductor multilayered nanostructure in external magnetic field: voight geometry. Acta Phys Pol A 127(2):528–530

    Article  Google Scholar 

  8. Boyda DL, Braguta VV, Valgushev SN et al (2014) Numerical simulation of graphene in an external magnetic field. Phys Rev B 89(24):245404

    Article  Google Scholar 

  9. Cosme P, Terças H (2021) Hydrodynamical study of terahertz emission in magnetized graphene field-effect transistors. Appl Phys Lett 118(13):131109

    Article  CAS  Google Scholar 

  10. Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41(2):782–796

    Article  CAS  PubMed  Google Scholar 

  11. Tongay S, Lemaitre M, Miao X et al (2012) Rectification at graphene-semiconductor interfaces: zero-gap semiconductor-based diodes. Phys Rev X 2(1):011002

    Google Scholar 

  12. Hu Y, Zhou C, Wang H et al (2021) Recent advance of graphene/semiconductor composite nanocatalysts: Synthesis, mechanism, applications and perspectives. Chem Eng J 414:128795

    Article  CAS  Google Scholar 

  13. Justin Jesuraj P, Parameshwari R, Kanthasamy K et al (2017) Hole injection enhancement in organic light emitting devices using plasma treated graphene oxide. Appl Surf Sci 397:144–151

    Article  Google Scholar 

  14. Hu M, Yan Y, Huang K et al (2018) Performance improvement of graphene/silicon photodetectors using high work function metal nanoparticles with plasma effect. Adv Opt Mater 6(9):1701243

    Article  Google Scholar 

  15. Radsar T, Khalesi H, Ghods V (2021) Graphene properties and applications in nanoelectronic. Opt Quant Electron 53:178

    Article  CAS  Google Scholar 

  16. Park CS, Yoon H, Kwon OS (2016) Graphene-based nanoelectronic biosensors. J Ind Eng Chem 38:13–22

    Article  CAS  Google Scholar 

  17. Li X, Xie R, Li W et al (2019) Adjustable electromagnetically induced transparency effect based on graphene surface plasmon. Superlattices Microstruct 128:342–348

    Article  CAS  Google Scholar 

  18. Hajati Y, Zanbouri Z, Sabaeian M (2018) Low-loss and high-performance mid-infrared plasmon-phonon in graphene-hexagonal boron nitride waveguide. J Opt Soc Am B 35(2):446–453

    Article  CAS  Google Scholar 

  19. Iizuka H, Fan S (2013) Deep subwavelength plasmonic waveguide switch in double graphene layer structure. Appl Phys Lett 103(23):233107

    Article  Google Scholar 

  20. Bai T, Tang Y, Hu Z-D et al (2020) High-performance sensitive TE/TM mode switch with graphene-based metal-dielectric resonances. IEEE Sens J 21(3):2791–2797

    Article  Google Scholar 

  21. Yin X, Zhang T, Chen L, Li X (2015) Ultra-compact TE-pass polarizer with graphene multilayer embedded in a silicon slot waveguide. Opt Lett 40(8):1733–1736

    Article  CAS  PubMed  Google Scholar 

  22. Mikhailov SA, Ziegler K (2007) New electromagnetic mode in graphene. Phys Rev Lett 99(1):016803

    Article  CAS  PubMed  Google Scholar 

  23. Shkerdin G, Alkorre H, Stiens J et al (2015) Modified TM and TE waveguide modes and reflectivity by graphene layer in coupled-graphene-metal multilayer structure in sub-terahertz frequency. J Opt 17(5):055006

    Article  Google Scholar 

  24. Chaves AJ, Peres NMR, Smirnov G et al (2017) Hydrodynamic model approach to the formation of plasmonic wakes in graphene. Phys Rev B 96(19):195438

    Article  Google Scholar 

  25. Ferreira BA, Amorim B, Chaves AJ et al (2020) Quantization of graphene plasmons. Phys Rev A 101(3):033817

    Article  CAS  Google Scholar 

  26. Hua X, Sun D, Zhang X et al (2023) Modified dispersion for graphene plasmon polariton in hydrodynamic model without potential notation. Solid State Commun 369:115199

    Article  CAS  Google Scholar 

  27. Malekabadi A, Charlebois SA, Deslandes D (2013) Parallel plate waveguide with anisotropic graphene plates: effect of electric and magnetic biases. J Appl Phys 113(11):113708

    Article  Google Scholar 

  28. Iorsh IV, Shadrivov IV, Belov PA et al (2013) Tunable hybrid surface waves supported by a graphene layer. JETP Lett 97:249–252

    Article  CAS  Google Scholar 

  29. Xu G, Cao M, Liu C et al (2016) Tunable surface plasmon-polaritons in a gyroelectric slab sandwiched between two graphene layers. Optics Commun 366:112–118

    Article  CAS  Google Scholar 

  30. Toscano G, Raza S, Jauho AP et al (2012) Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response. Opt Express 20(4):4176–4188

    Article  CAS  PubMed  Google Scholar 

  31. Ukhtary SSR (2020) Surface plasmons in graphene and carbon nanotubes. Carbon An International Journal Sponsored by the American Carbon Society 167(1):455–474

    CAS  Google Scholar 

  32. Bludov YV, Ferreira A, Peres NMR et al (2013) A primer on surface plasmon-polaritons in graphene. Int J Mod Phys B 27(10):1341001

    Article  Google Scholar 

Download references

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

X.H. was responsible for Methodology, Software, Investigation, Formal Analysis and Writing - Original Draft; D.X. was responsible for Data Curation and Resources; D.L. was responsible for Conceptualization, Funding Acquisition, Supervision and Writing-Review & Editing; N.M. was responsible for Validation, Visualization and Writing - Review & Editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Daqing Liu.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hua, X., Sun, D., Liu, D. et al. The Double-Layer Graphene Surface Plasmon-Polaritons Spectrum in Hydrodynamic Model. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02368-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02368-4

Keywords

Navigation