Skip to main content
Log in

Tunable Surface Plasmon Resonance in Metal-Dielectric Multilayer Structures

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A model system of metal nanocomposite structures separated by dielectric layers has been developed to reveal the impact of the dielectric matching layer on surface plasmon resonance (SPR) in multilayer structures. The research results indicate that SPR is highly sensitive to the dielectric constant and interface thickness of the dielectric layer. The dielectric constant and thickness of the dielectric layer together determine the propagation characteristics of the electromagnetic wave within the medium. The thickness of the dielectric layer affects the propagation distance of the electromagnetic field within the layer, while the dielectric constant regulates the speed and extent of the medium’s response to changes in the electric field. In this study, when the dielectric layer thickness is less than 30 nm, localized surface plasmons and propagating surface plasmons can couple between gold nanoparticles and gold films, with the coupling effect being more pronounced when the dielectric layer thickness is between 10 and 20 nm. Conversely, when the dielectric layer thickness exceeds 30 nm, the electromagnetic field is effectively isolated, hindering the coupling effect, with the localized surface plasmon resonance becoming the primary mechanism. Within the illumination range of 400 to 1200 nm, the dielectric constant within the range of 1.4 to 3.8 exhibits an approximately linear relationship with the wavelength of the absorption peak, with electric field intensity reaching its maximum when the dielectric constant is close to 2.6. Therefore, in the design and optimization of optical devices, precise control of the plasmon resonance modes can be achieved by systematically adjusting the thickness and dielectric constant of the dielectric layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Rahman A, Islam MdS, Alharbi M et al (2024) X-shaped exposed core highly sensitive plasmonic sensor for cancer cell detection. Opt Quantum Electron 56:718. https://doi.org/10.1007/s11082-024-06392-w

    Article  CAS  Google Scholar 

  2. Pirhaghshenasvali S, Ghayour R, Vaghefi M (2024) Highly sensitive biosensor based on nanoparticle/grating: a case study on detecting waterborne bacteria in drinking water. Opt Quantum Electron 56:602. https://doi.org/10.1007/s11082-023-06204-7

    Article  CAS  Google Scholar 

  3. Bliokh YP, Felsteiner J, Slutsker YZ (2005) Total absorption of an electromagnetic wave by an overdense plasma. Phys Rev Lett 95:165003. https://doi.org/10.1103/PhysRevLett.95.165003

    Article  CAS  PubMed  Google Scholar 

  4. Kupersztych J, Raynaud M, Riconda C (2004) Electron acceleration by surface plasma waves in the interaction between femtosecond laser pulses and sharp-edged overdense plasmas. Phys Plasmas 11:1669–1673. https://doi.org/10.1063/1.1650353

    Article  CAS  Google Scholar 

  5. Akimov YuA (2007) Resonant excitation of counterpropagating surface waves at a Langmuir wave decay. Plasma Phys Rep 33:310–315. https://doi.org/10.1134/S1063780X0704006X

    Article  CAS  Google Scholar 

  6. Yao M, Tan O, Tjin S-C, Wolfe J (2008) Effects of intermediate dielectric films on multilayer surface plasmon resonance behavior. Acta Biomater 4:2016–2027. https://doi.org/10.1016/j.actbio.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  7. Radziuk D, Möhwald H (2015) Surpassingly competitive electromagnetic field enhancement at the silica/silver interface for selective intracellular surface enhanced Raman scattering detection. ACS Nano 9:2820–2835. https://doi.org/10.1021/nn506741v

    Article  CAS  PubMed  Google Scholar 

  8. Li Q, Yang S, Liu R et al (2023) Synergetic effect of the interface electric field and the plasmon electromagnetic field in Au-Ag alloy mediated Z-type heterostructure for photocatalytic hydrogen production and CO2 reduction. Appl Catal B Environ 331:122700. https://doi.org/10.1016/j.apcatb.2023.122700

    Article  CAS  Google Scholar 

  9. Romano S, Zito G, Managò S et al (2018) Surface-enhanced Raman and fluorescence spectroscopy with an all-dielectric metasurface. J Phys Chem C 122:19738–19745. https://doi.org/10.1021/acs.jpcc.8b03190

    Article  CAS  Google Scholar 

  10. Kuryoz PYu, Poperenko LV, Kravets VG (2013) Correlation between dielectric constants and enhancement of surface plasmon resonances for thin gold films. Phys Status Solidi A 210:2445–2455. https://doi.org/10.1002/pssa.201329272

    Article  CAS  Google Scholar 

  11. Al-Qadi B (2022) T-matrix simulations of the optical response of gold nanorods: Impact of dielectric function of nanorods on the simulated optical properties and their sensitivity to the dielectric environment. AIP Adv 12:095002. https://doi.org/10.1063/5.0102601

    Article  CAS  Google Scholar 

  12. Afsharnia M, Hamidi SM (2018) Characterization of Au/Fe/Au and Au/Co/Au magneto-plasmonic multilayers as an ethanol vapor sensor. IEEE Trans Magn 54:1–7. https://doi.org/10.1109/TMAG.2017.2761754

    Article  Google Scholar 

  13. Zhu D, Kang L, Tong K et al (2023) Research on surface plasmon resonance sensing of metal nano hollow elliptic cylinder. Plasmonics. https://doi.org/10.1007/s11468-023-01930-w

    Article  Google Scholar 

  14. Pandit RR, Sentoku Y (2012) Higher order terms of radiative damping in extreme intense laser-matter interaction. Phys Plasmas 19:073304. https://doi.org/10.1063/1.4739442

    Article  CAS  Google Scholar 

  15. Bell AR, Kirk JG (2008) Possibility of prolific pair production with high-power lasers. Phys Rev Lett 101:200403. https://doi.org/10.1103/PhysRevLett.101.200403

    Article  CAS  PubMed  Google Scholar 

  16. Mustafa DE, Yang T, Xuan Z et al (2010) Surface plasmon coupling effect of gold nanoparticles with different shape and size on conventional surface plasmon resonance signal. Plasmonics 5:221–231. https://doi.org/10.1007/s11468-010-9141-z

    Article  CAS  Google Scholar 

  17. Dadadzhanov DR, Gladskikh IA, Baranov MA et al (2021) Self-organized plasmonic metasurfaces: the role of the Purcell effect in metal-enhanced chemiluminescence (MEC). Sens Actuators B Chem 333:129453. https://doi.org/10.1016/j.snb.2021.129453

    Article  CAS  Google Scholar 

  18. Stevenson PR, Du M, Cherqui C et al (2020) Active plasmonics and active chiral plasmonics through orientation-dependent multipolar interactions. ACS Nano 14:11518–11532. https://doi.org/10.1021/acsnano.0c03971

    Article  CAS  PubMed  Google Scholar 

  19. Huakang Yu, Liu Bodong Wu, Wanling LZ (2019) Surface plasmaons enhanced light-matter interactions. Acta Phys Sin 68:149101–149115. https://doi.org/10.7498/aps.68.20190337

    Article  CAS  Google Scholar 

  20. Bhardwaj S, Pathak NK, Ji A et al (2017) Tunable properties of surface plasmon resonance of metal nanospheroid: graphene plasmon interaction. Plasmonics 12:193–201. https://doi.org/10.1007/s11468-016-0249-7

    Article  CAS  Google Scholar 

  21. Liu X, Li D, Sun X et al (2015) Tunable dipole surface plasmon resonances of silver nanoparticles by cladding dielectric layers. Sci Rep 5:12555. https://doi.org/10.1038/srep12555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Hong-Wei Y, Ru-Shan C, Yun Z (2006) SO-FDTD method and its application to the calculation of electromagnetic wave reflection coefficients of plasma. Acta Phys Sin 55:3464–3469. https://doi.org/10.7498/aps.55.3464

    Article  Google Scholar 

  23. Golmakaniyoon S, Hernandez-Martinez PL, Demir HV, Sun XW (2016) Cascaded plasmon-plasmon coupling mediated energy transfer across stratified metal-dielectric nanostructures. Sci Rep 6:34086. https://doi.org/10.1038/srep34086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Akimov YuA, Chu HS (2011) Plasmon coupling effect on propagation of surface plasmon polaritons at a continuous metal/dielectric interface. Phys Rev B 83:165412. https://doi.org/10.1103/PhysRevB.83.165412

    Article  CAS  Google Scholar 

  25. Zhang N, Zhou P, Wang S et al (2015) Broadband absorption in mid-infrared metamaterial absorbers with multiple dielectric layers. Opt Commun 338:388–392. https://doi.org/10.1016/j.optcom.2014.11.008

    Article  CAS  Google Scholar 

Download references

Funding

This research was supported by the Natural Science Foundation of Zhejiang Province under grant number LY21F010010.

Author information

Authors and Affiliations

Authors

Contributions

The author contributions in the manuscript are as follows: Jing Jin and Xudong Cheng wrote the main draft. Yun Zhou, Zhicheng Dong, and Zhenyu Xue participated in the writing of the results and discussion sections. All authors reviewed their manuscript prior to submission.

Corresponding author

Correspondence to Xudong Cheng.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Cheng, X., Zhou, Y. et al. Tunable Surface Plasmon Resonance in Metal-Dielectric Multilayer Structures. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02344-y

Keywords

Navigation