Skip to main content
Log in

Performance Enhancement of Gold Coated D-shaped PCF Sensor Using Monolayer MoS2

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, we theoretically propose a surface plasmon resonance (SPR)-based D-shaped photonic crystal fiber (PCF) sensor with gold coating and an overlayer of molybdenum disulfide (MoS2) 2D material. We design a PCF sensor with the square lattice arrangement of air holes for sensing the analytes of refractive index ranging from 1.33 to 1.42, which includes most of the bio-samples. Further, we optimize the proposed sensor in terms of two different air hole radii, pitch distance, thickness of the gold layer, and 2D material. The detailed numerical results corroborate that the sensor exhibits a wavelength sensitivity of 20,200 nm/RIU without a coating of MoS2 layer. However, it does exhibit an enhanced wavelength sensitivity of 22,800 nm/RIU with a high spectral resolution of 4.38 × 10−6 RIU when a monolayer of MoS2 is coated onto the gold layer. In addition to wavelength sensitivity, we also compute the amplitude sensitivity which is 752 RIU−1 with a resolution of 1.34 × 10−6 RIU. Besides, we carry out tolerance studies to ensure the robustness of the proposed sensor. Finally, polynomial fitting characteristics are investigated and the R2 value is found to be 0.99825. The novelty of the proposed model relies upon the integration of an experimentally feasible D-shaped PCF structure with a 2D layer (MoS2) coating. The sensing performance of PCF with MoS2 coating has been barely studied in the past. We have done an extensive analysis of the performance of the PCF sensor with MoS2 overlayer. As of the author’s knowledge, the proposed sensor shows higher sensitivity than the other MoS2-coated refractive index PCF sensors reported so far. This study may turn out to be an impetus for further interest towards the PCF sensors via MoS2 coating. Thus, the proposed D-shaped MoS2-coated PCF sensor finds potential application in the detection of chemical and biological samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Yin MJ, Gu B, An QF, Yang C, Guan YL, Yong KT (2018) Recent development of fiber-optic chemical sensors and biosensors: mechanisms, materials, micro/nano-fabrications and applications. Coord Chem Rev 376:348–392

    Article  CAS  Google Scholar 

  2. Rachana M, Charles I, Swarnakar S, Krishna SV, Kumar S (2022) Recent advances in photonic crystal fiber-based sensors for biomedical applications. Opt Fiber Technol 74:103085

    Article  Google Scholar 

  3. Knight JC, Birks TA, Russell PSJ, Atkin DM (1996) All-silica single-mode optical fiber with photonic crystal cladding. Opt Lett 21(19):1547–1549

    Article  CAS  PubMed  Google Scholar 

  4. Sunny SAS, Ahmed T, Hiam SM, Paul AK (2021) Highly sensitive externally metal coated plasmonic refractive index sensor based on photonic crystal fiber. Optik 243:167482

    Article  Google Scholar 

  5. Shuai B, Xia L, Liu D (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866

    Article  PubMed  Google Scholar 

  6. Melwin G, Senthilnathan K (2020) High sensitive D-shaped photonic crystal fiber sensor with V-groove analyte channel. Optik 213:164779

    Article  CAS  Google Scholar 

  7. Singh S, Chaudhary B, Upadhyay A, Sharma D, Ayyanar N, Taya SA (2023) A review on various sensing prospects of SPR based photonic crystal Fibers. Phot Nano Fund Appl 54:101119

    Article  Google Scholar 

  8. Dash JN, Jha R (2016) Highly sensitive D shaped PCF sensor based on SPR for near IR. Opt Quant Electron 48:1–7

    Article  CAS  Google Scholar 

  9. Kiroriwal M, Singal P (2021) Design and analysis of highly sensitive solid core gold-coated hexagonal photonic crystal fiber sensor based on surface plasmon resonance. J Nanophotonics 15(2):026008–026008

    Article  CAS  Google Scholar 

  10. Opoku G, Danlard I, Dede A, Akowuah EK (2023) Design and numerical analysis of a circular SPR based PCF biosensor for aqueous environments. Res Opt 12:100432

    Article  Google Scholar 

  11. Singh S, Prajapati YK (2020) TiO2/gold-graphene hybrid solid core SPR based PCF RI sensor for sensitivity enhancement. Optik 224:165525

    Article  CAS  Google Scholar 

  12. Chaudhary VS, Kumar D, Pandey BP, Kumar S (2022) Advances in photonic crystal fiber-based sensor for detection of physical and biochemical parameters—a review. IEEE Sens J 23(2):1012–1023

    Article  Google Scholar 

  13. Liang H, Feng Y, Liu H, Han W, Shen T (2022) High-performance PCF-SPR sensor coated with ag and graphene for humidity sensing. Plasmonics 17(4):1765–1773

    Article  CAS  Google Scholar 

  14. Min R, Liu Z, Pereira L, Yang C, Sui Q, Marques C (2021) Optical fiber sensing for marine environment and marine structural health monitoring: A review. Opt Laser Technol 140:107082

    Article  CAS  Google Scholar 

  15. Melwin G, Senthilnathan K (2024) Modelling a simple arc shaped gold coated PCF-based SPR sensor. J Opt 53(1):117–126

    Article  Google Scholar 

  16. Haque MA, Rahad R, Faruque MO, Mobassir MS, Sagor RH (2024) Numerical analysis of a metal-insulator-metal waveguide-integrated magnetic field sensor operating at sub-wavelength scales. Sens Bio-Sens Res 43:100618

    Article  Google Scholar 

  17. Chou Chao CT, Chau C, Chen YF, Huang SH, Lim HJ, Kooh CM, Thotagamuge MRR, R. and Chiang HP, (2021) Ultrahigh sensitivity of a plasmonic pressure sensor with a compact size. Nanomaterials 11(11):3147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Moeinimaleki B, Kaatuzian H, Mallah Livani A (2023) Design and simulation of a resonance-based plasmonic sensor for mass density sensing of methane and carbon dioxide gases. Plasmonics 18(1):225–240

    Article  CAS  Google Scholar 

  19. Rahad R, Haque MA, Faruque MO, Mohsin AS, Mobassir MS, Sagor RH (2024) A novel plasmonic MIM sensor using integrated 1×2 demultiplexer for individual lab-on-chip detection of human blood group and diabetes level in the visible to near-infrared region. IEEE Sens J 24(8):12034–12041

    Article  Google Scholar 

  20. Rahad R, Rakib AKM, Haque MA, Sharar SS, Sagor RH (2023) Plasmonic refractive index sensing in the early diagnosis of diabetes, anemia, and cancer: An exploration of biological biomarkers. Res Phys 49:106478

    Google Scholar 

  21. Sasi S, Francis SM, Jacob J, Thomas VI (2021) A tunable plasmonic refractive index sensor with ultrabroad sensing range for cancer detection. Plasmonics 16(5):1705–1717

    Article  CAS  Google Scholar 

  22. Hocini A, Temmar MN, Khedrouche D (2019) Design of mid infrared high sensitive metal-insulator-metal plasmonic sensor. Chin J Phys 61:86–97

    Article  Google Scholar 

  23. Haque MA, Rahad R, Rakib AKM, Sharar SS, Sagor RH (2023) Plasmonic sensor for rapid detection of water adulteration in honey and quantitative measurement of lactose concentration in solution. Res Phys 51:106733

    Google Scholar 

  24. Manickam P, Senthil R (2023) Numerical demonstration of photonic quasi-crystal fiber–surface plasmonic resonance urinary methanol sensor. Plasmonics 18(2):511–519

    Article  CAS  Google Scholar 

  25. Krishnan S, S N, S P, P RB, K S (2023) A novel side polished PCF-based SPR sensor with shifted core region. Plasmonics 19:1043–1051

  26. Mittal S, Saharia A, Ismail Y, Petruccione F, Bourdine AV, Morozov OG, Demidov VV, Yin J, Singh G, Tiwari M, Kumar S (2023) Design and performance analysis of a novel hoop-cut SPR-PCF sensor for high sensitivity and broad range sensing applications. IEEE Sens J 24(3):2697–2704

    Article  Google Scholar 

  27. Divya J, Selvendran S (2022) A novel plasmonic sensor using solid core D-shaped negative curvature optical fiber with AU–TiO2 layer. Laser Phys 32(11):116205

    Article  CAS  Google Scholar 

  28. Kumar A, Verma P, Jindal P (2023) Surface plasmon resonance sensor based on MXene coated PCF for detecting the cancer cells with machine learning approach. Microelectron Eng 267:111897

    Article  Google Scholar 

  29. An G, Li S, Wang H, Zhang X (2017) Metal oxide-graphene-based quasi-D-shaped optical fiber plasmonic biosensor. IEEE Photonics J 9(4):1–9

    Article  Google Scholar 

  30. Singh S, Prajapati YK (2020) Dual-polarized ultrahigh sensitive gold/MoS2/graphene based D-shaped PCF refractive index sensor in visible to near-IR region. Opt Quantum Electron 52(1):17

    Article  CAS  Google Scholar 

  31. Kumar A, Verma P, Jindal P (2022) Surface plasmon resonance biosensor based on a D-shaped photonic crystal fiber using Ti3C2Tx MXene material. Optical Materials 128:112397

    Article  CAS  Google Scholar 

  32. Wu L, You Q, Shan Y, Gan S, Zhao Y, Dai X, Xiang Y (2018) Few-layer Ti3C2Tx MXene: a promising surface plasmon resonance biosensing material to enhance the sensitivity. Sens Actuators B 277:210–215

    Article  CAS  Google Scholar 

  33. Cao F, Zhang Y, Wang H, Khan K, Tareen AK, Qian W, Zhang H, Ågren H (2022) Recent advances in oxidation stable chemistry of 2D MXenes. Adv Mater 34(13):2107554

    Article  CAS  Google Scholar 

  34. Mishra AK, Lakshmi KV, Huang L (2015) Eco-friendly synthesis of metal dichalcogenides nanosheets and their environmental remediation potential driven by visible light. Sci Rep 5(1):15718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Ermolaev GA, Stebunov YV, Vyshnevyy AA, Tatarkin DE, Yakubovsky DI, Novikov SM, Baranov DG, Shegai T, Nikitin AY, Arsenin AV, Volkov VS (2020) Broadband optical properties of monolayer and bulk MoS2. npj 2D Mater Appl 4(1):21

    Article  CAS  Google Scholar 

  36. Lopez-Sanchez O, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8(7):497–501

    Article  CAS  PubMed  Google Scholar 

  37. Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via Van Der Waals epitaxy. ACS Nano 10(7):7039–7046

    Article  CAS  PubMed  Google Scholar 

  38. Kumar MA, Kumar MS, Kumar VR (2016) Graphene and Beyond Graphene MoS2: A New Window in Surface-Plasmon-. Resonance-Based Fiber Optic Sensing

    Google Scholar 

  39. Mahfuz MA, Afroj S, Hossain MA, Hossain MA, Rahman A, Habib MS (2024) An ultra-sensitive visible-IR range fiber based plasmonic refractive index sensor. arXiv preprint https://arxiv.org/abs/2401.10968

  40. Kumar A, Verma P, Jindal P (2023) Machine learning approach to surface plasmon resonance sensor based on MXene coated PCF for malaria disease detection in RBCs. Optik 274:170549

    Article  CAS  Google Scholar 

  41. Chu S, Nakkeeran K, Abobaker AM, Aphale SS, Sivabalan S, Babu PR, Senthilnathan K (2020) A surface plasmon resonance bio-sensor based on dual core D-shaped photonic crystal fibre embedded with silver nanowires for multisensing. IEEE Sens J 21(1):76–84

    Article  Google Scholar 

  42. Kitamura R, Pilon L, Jonasz M (2007) Optical constants of silica glass from extreme ultraviolet to far infrared at near room temperature. Appl Opt 46(33):8118–8133

    Article  CAS  PubMed  Google Scholar 

  43. Vial A, Grimault AS, Macías D, Barchiesi D, De La Chapelle ML (2005) Improved analytical fit of gold dispersion: Application to the modeling of extinction spectra with a finite-difference time-domain method. Phys Rev B 71(8):085416

    Article  Google Scholar 

  44. Zuhayer A, Abd-Elnaby M, Ahammad SH, Eid MM, Sorathiya V, Rashed ANZ (2022) A gold-plated twin core D-formed photonic crystal fiber (PCF) for ultrahigh sensitive applications based on surface plasmon resonance (SPR) approach. Plasmonics 17(5):2089–2101

    Article  CAS  Google Scholar 

  45. An G, Hao X, Li S, Yan X, Zhang X (2017) D-shaped photonic crystal fiber refractive index sensor based on surface plasmon resonance. Appl Opt 56(24):6988–6992

    Article  CAS  PubMed  Google Scholar 

  46. Al Mahfuz M, Hossain MA, Haque E, Hai NH, Namihira Y, Ahmed F (2020) Dual-core photonic crystal fiber-based plasmonic RI sensor in the visible to near-IR operating band. IEEE Sens J 20(14):7692–7700

    Article  CAS  Google Scholar 

  47. Sakib MN, Hossain MB, Al-tabatabaie KF, Mehedi IM, Hasan MT, Hossain MA, Amiri IS (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Res Phys 15:102788

    Google Scholar 

  48. Sorathiya V, Lavadiya S, Faragallah OS, Eid MM, Rashed ANZ (2022) D shaped dual core photonics crystal based refractive index sensor using graphene–titanium–silver materials for infrared frequency spectrum. Opt Quantum Electron 54(5):290

    CAS  Google Scholar 

  49. Li K, Guo Y, Li S, Yin Z, Chen Q, Meng X, Gao Z, Bai G (2023) High sensitivity refractive index sensor based on D-shaped photonic crystal fiber coated with graphene-silver films. Plasmonics 18(3):1093–1101

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

S. Praveena: conceptualization, data curation, validation, writing original draft, and review and editing. Senthilnathan K: project administration, conceptualization, validation, and review and editing

Corresponding author

Correspondence to K. Senthilnathan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Praveena, S., Senthilnathan, K. Performance Enhancement of Gold Coated D-shaped PCF Sensor Using Monolayer MoS2. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02339-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02339-9

Keywords

Navigation