Skip to main content
Log in

Optical Tamm States in 2D Nanostructured Magnetophotonic Structures

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We numerically explore optical Tamm states (OTS) supported by a photonic structure composed of a nanostructured metallic layer on top of a distributed Bragg reflector (DBR). Several polarizations, incidences and patterning are assessed to map OTS and their properties. We then gain magnetic control of the OTS by adding a cobalt layer below the metal pattern and switching its magnetization. This control, widely used in plasmonics, takes advantage of the Transverse Magneto-Optical Kerr Effect (TMOKE). The simulated TMOKE signal of this structure has an amplitude of the order of 10\(^{-3}\) and, compared to conventional magnetoplasmonic structures, provides high energy confinement between the metal stripes. In addition to the opening of the metallic layer that allows better access of the analyte to the sensitive area, this paves the way for higher sensitivities in bio- and chemical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

The datasets generated during and analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Kaliteevski M, Iorsh I, Brand S, Abram R, Chamberlain J, Kavokin A, Shelykh I (2007) Tamm plasmon-polaritons: Possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror. Phys Rev B 76(16):165415

    Article  Google Scholar 

  2. Kavokin A, Shelykh I, Malpuech G (2005) Lossless interface modes at the boundary between two periodic dielectric structures. Phys Rev B 72(23):233102

    Article  Google Scholar 

  3. Ilchenko SG, Lymarenko RA, Taranenko VB (2016) Metal-Multilayer-Dielectric Structure for Enhancement of s- and p-Polarized Evanescent Waves. Nanoscale Res Lett 11(1):42. https://doi.org/10.1186/s11671-016-1274-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Ilchenko SG, Lymarenko RA, Taranenko VB (2017) Using Metal-Multilayer-Dielectric Structure to Increase Sensitivity of Surface Plasmon Resonance Sensor. Nanoscale Res Lett 12(1):295. https://doi.org/10.1186/s11671-017-2073-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kar C, Jena S, Udupa DV, Rao KD (2023) Tamm plasmon polariton in planar structures: A brief overview and applications. Opt Laser Technol 159:108928

    Article  Google Scholar 

  6. Sasin M, Seisyan R, Kalitteevski M, Brand S, Abram R, Chamberlain J, Egorov AY, Vasil’Ev A, Mikhrin V, Kavokin A (2008) Tamm plasmon polaritons: Slow and spatially compact light. Appl Phys Lett 92(25):251112

    Article  Google Scholar 

  7. Chen Y, Zhang D, Zhu L, Fu Q, Wang R, Wang P, Ming H, Badugu R, Lakowicz JR (2014) Effect of metal film thickness on Tamm plasmon-coupled emission. Phys Chem Chem Phys 16(46):25523–25530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Lu H, Li Y, Jiao H, Li Z, Mao D, Zhao J (2019) Induced reflection in Tamm plasmon systems. Opt Express 27(4):5383–5392

    Article  CAS  PubMed  Google Scholar 

  9. Bikbaev RG, Maksimov DN, Pankin PS, Chen K-P, Timofeev IV (2021) Critical coupling vortex with grating-induced high Q-factor optical Tamm states. Opt Express 29(3):4672–4680

    Article  CAS  PubMed  Google Scholar 

  10. Buchnev O, Belosludtsev A, Reshetnyak V, Evans DR, Fedotov VA (2020) Observing and controlling a Tamm plasmon at the interface with a metasurface. Nanophotonics 9(4):897–903

    Article  Google Scholar 

  11. Qiao T, Hu M, Jiang X, Wang Q, Zhu S, Liu H (2021) Generation and tunability of supermodes in Tamm plasmon topological superlattices. ACS Photonics 8(7):2095–2102

    Article  CAS  Google Scholar 

  12. Dong HY, Wang J, Cui TJ (2013) One-way Tamm plasmon polaritons at the interface between magnetophotonic crystals and conducting metal oxides. Phys Rev B 87(4):045406

    Article  Google Scholar 

  13. Auguié B, Fuertes MC, Angelomé PC, Abdala NL, Soler Illia GJ, Fainstein A (2014) Tamm plasmon resonance in mesoporous multilayers: toward a sensing application. ACS Photonics 1(9):775–780

    Article  Google Scholar 

  14. Gazzano O, De Vasconcellos SM, Gauthron K, Symonds C, Bloch J, Voisin P, Bellessa J, Lemaître A, Senellart P (2011) Evidence for confined Tamm plasmon modes under metallic microdisks and application to the control of spontaneous optical emission. Phys Rev Lett 107(24):247402

    Article  CAS  PubMed  Google Scholar 

  15. Lheureux G (2015) Étude de l’effet laser dans les structures à plasmon Tamm. PhD thesis, Lyon 1

  16. Buchnev O, Belosludtsev A, Fedotov VA (2022) Observation of a High-Energy Tamm Plasmon State in the Near-IR Region. ACS Appl Mater Interfaces 14(11):13638–13644. https://doi.org/10.1021/acsami.2c00486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Ferrier L, Nguyen HS, Jamois C, Berguiga L, Symonds C, Bellessa J, Benyattou T (2019) Tamm plasmon photonic crystals: From bandgap engineering to defect cavity. APL Photonics 4(10):106101

    Article  Google Scholar 

  18. Ignatyeva DO, Knyazev GA, Kapralov PO, Dietler G, Sekatskii SK, Belotelov VI (2016) Magneto-optical plasmonic heterostructure with ultranarrow resonance for sensing applications. Sci Rep 6(1):28077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wu J, Yang X, Wang Z, Wu B, Wu X (2022) Giant enhancement of the transverse magneto-optical Kerr effect based on the Tamm plasmon polaritons and its application in sensing. Opt Laser Technol 154:108353

    Article  CAS  Google Scholar 

  20. Manera MG, Montagna G, Ferreiro-Vila E, González-García L, Sánchez-Valencia J, González-Elipe AR, Cebollada A, Garcia-Martin JM, García-Martín A, Armelles G et al (2011) Enhanced gas sensing performance of TiO\(_{2}\) functionalized magneto-optical SPR sensors. J Mater Chem 21(40):16049–16056

  21. Kreilkamp LE, Belotelov VI, Chin JY, Neutzner S, Dregely D, Wehlus T, Akimov IA, Bayer M, Stritzker B, Giessen H (2013) Waveguide-Plasmon Polaritons Enhance Transverse Magneto-Optical Kerr Effect. Phys Rev X 3(4):041019. https://doi.org/10.1103/PhysRevX.3.041019

    Article  CAS  Google Scholar 

  22. Voronov AA, Karki D, Ignatyeva DO, Kozhaev MA, Levy M, Belotelov VI (2020) Magneto-optics of subwavelength all-dielectric gratings. Opt Express 28(12):17988. https://doi.org/10.1364/OE.394722

    Article  PubMed  Google Scholar 

  23. Carvalho WOF, Mejía-Salazar JR (2022) All-dielectric magnetophotonic gratings for maximum TMOKE enhancement. Phys Chem Chem Phys 24(9):5431–5436. https://doi.org/10.1039/D1CP05232B

    Article  CAS  PubMed  Google Scholar 

  24. Luke K, Okawachi Y, Lamont MR, Gaeta AL, Lipson M (2015) Broadband mid-infrared frequency comb generation in a Si\(_{3}\)N\(_{4}\) microresonator. Opt Lett 40(21):4823–4826

  25. Malitson IH (1965) Interspecimen comparison of the refractive index of fused silica. J Opt Soc Am 55(10):1205–1209

    Article  CAS  Google Scholar 

  26. Ghouila-Houri C, Gerbedoen J-C, Viard R, Talbi A, Merlen A, Pernod P, Lics JILL et al (2015) Design and elaboration of 1D photonic crystal cavity based on highly flexible elastomer thin layer for sensors applications. Proc Eng 120:744–747

    Article  CAS  Google Scholar 

  27. Qiu Z, Bader SD (1999) Surface magneto-optic Kerr effect (SMOKE). J Magn Magn Mater 200(1–3):664–678

    Article  CAS  Google Scholar 

  28. Dehesa-Martínez C, Blanco-Gutierrez L, Vélez M, Diaz J, Alvarez-Prado L, Alameda J (2001) Magneto-optical transverse Kerr effect in multilayers. Phys Rev B 64(2):024417

    Article  Google Scholar 

  29. Symonds C, Azzini S, Lheureux G, Piednoir A, Benoit J-M, Lemaitre A, Senellart P, Bellessa J (2017) High quality factor confined Tamm modes. Sci Rep 7(1):3859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fang Y-T, Ni Y-X, He H-Q, Hu J-X (2014) Effect of hybrid state of surface plasmon-polaritons, magnetic defect mode and optical Tamm state on nonreciprocal propagation. Opt Commun 320:99–104

    Article  CAS  Google Scholar 

  31. Li L, Lei F, Zong X, Li P, Liu Y (2023) Enhancement of transverse magneto-optical Kerr effect based on surface plasmon and its application in sensing. Results Phys 51:106640. https://doi.org/10.1016/j.rinp.2023.106640

  32. Allsop T, Neal R, Davies EM, Mou C, Bond P, Rehman S, Kalli K, Webb DJ, Calverhouse P, Bennion I (2010) Low refractive index gas sensing using a surface plasmon resonance fibre device. Meas Sci Technol 21(9):094029

    Article  Google Scholar 

Download references

Funding

This work was supported by Conseil Régional Hauts-de-France (Hauts-de-France Regional Council) and Centrale Lille Institut.

Author information

Authors and Affiliations

Authors

Contributions

B.M. did conceptualization (equal), formal analysis (equal), investigation (equal), methodology (equal), visualization (equal), writing - original draft (equal) and writing – review & editing (equal). O.H. did validation (equal) and writing – review & editing (equal). A.T. did conceptualization (equal), formal analysis (equal), funding acquisition (equal), methodology (equal), supervision (equal) and writing – review & editing (equal). N.T. did funding acquisition (equal), supervision (equal) and writing – review & editing (equal) A.M. did funding acquisition (equal) and supervision (equal). EH.EB. did writing – review & editing (equal). B.D.R. did writing – review & editing (equal). G.L did supervision (equal). A.A. did supervision (equal). Y.D. did conceptualization (equal), formal analysis (equal), funding acquisition (equal), methodology (equal), supervision (equal), visualization (supporting) and writing – review & editing (equal).

Corresponding author

Correspondence to Baptiste Mathmann.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathmann, B., Haidar, O., Talbi, A. et al. Optical Tamm States in 2D Nanostructured Magnetophotonic Structures. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02301-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02301-9

Keywords

Navigation