Skip to main content
Log in

Corrugated Gold Tip as Optical Tweezers to Apply Force on Zinc Sulphide Quantum Dot Nanoparticle

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

One of the most important issues after synthesizing colloidal quantum dot nanoparticles is how to use them. In some cases, a very small number of these nanoparticles is needed. One of the ways to remove small amounts of these nanoparticles is to use a tip-shaped plasmonic optical tweezer made of metal. This work is dedicated to the improvement of the near-field enhancement beneath the tip apex due to delocalized plasmon excitation on a sub-wavelength grating engraved on the tip and nanofocusing of these plasmons. All the simulations of electromagnetic wave scattering on the nanoantenna are based on the finite difference time domain method. We have compared the force exerted on a 2 nm quantum dot nanoparticle of zinc sulphide with two plasmonic optical tweezers: a bare tip and a corrugated tip. In order to better use the concept of a plasmonic optical tweezer, the geometry of this system should be optimized. The geometrical parameters involved in the intensity distribution and consequently the force are the grating period, duty cycle, and the distance from the last grating to the top of the cone. By applying circular grating to the conical plasmonic tweezer made of gold, more force has been applied to the nanoparticle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No datasets were generated or analyzed during the current study.

References

  1. Mahamuni S, Khosravi AA, Kundu M, Kshirsagar A, Bedekar A, Avasare DB, Singh P, Kulkarni SK (1993) Thiophenolcapped ZnS quantum dots. JApplPhys 73(10):5237–40

    CAS  Google Scholar 

  2. Khosravi AA, Kundu M, Jatwa L, Deshpande SK, Bhagwat UA, Sastry M, Kulkarni SK (1995) Green luminescence from copper doped zinc sulphide quantum particles. ApplPhysLett 67(18):2702–4

    CAS  Google Scholar 

  3. Novotny L, Bharadwaj P, Deutsch B (2009) Optical antennas. Adv Opt Photon 1(3):438–483

    Article  Google Scholar 

  4. Behr N, Raschke MB (2008) (2008) Optical antenna properties of scanning probe tips: plasmoniclight scattering, tip-sample coupling, and near-field enhancement. JPhysChemC 112(10):3766–3773

    CAS  Google Scholar 

  5. Liao PF, Wokaun A (1982) Lightning rod effect in surface enhanced Raman scattering. J Chem Phys 76(1):751–752

    Article  CAS  Google Scholar 

  6. Taguchi K, Umakoshi T, Inoue S, Verma P (2021) Broadband plasmonnanofocusing: comprehensive study of broadband nanoscale light source. J Phys Chem C 125(11):6378–86

    CAS  Google Scholar 

  7. Oulton RF (2012) Surface plasmon lasers: sources of nanoscopic light. Mater Today 15(1–2):26–34

    Article  Google Scholar 

  8. Hartschuh A (2008) Tip-enhanced near-field optical microscopy. Angew Chem Int Ed 47(43):8178–8191

    Article  CAS  Google Scholar 

  9. Giannini V, S’anchez-Gil JA (2008) Excitation and emission enhancement of single molecule fluorescence through multiple surface-plasmon resonances on metal trimer nanoantennas. Opt Lett 33:899–901

    Article  CAS  PubMed  Google Scholar 

  10. Berweger S, Atkin JM, Olmon RL, Raschke MB (2010) Adiabatic tip-plasmon focusing for nano-Raman Spectroscopy. J Phys Chem Lett 24:3427–3432

    Article  Google Scholar 

  11. Chu S, Bjorkholm JE, Ashkin A, Cable A (1986) Experimental observation of optically trapped atoms. Phys Rev Lett 57:314–7

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Sevilla P, Labrador-Paez L, Jaque D, Haro-Gonzalez P (2017) Optical trapping for biosensing: materials and applications. J Mater Chem B 5:9085–101

    Article  CAS  PubMed  Google Scholar 

  13. Gao D, Ding W, Nieto-Vesperinas M et al (2017) Optical manipulation from the microscale to the nanoscale: fundamentals, advances and prospects. Light Sci Appl 6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Zhang H, Liu KK (2008) Optical tweezers for single cells. J R Soc Interface 5:671–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhao D, Liu S, Gao Y (2018) Single-molecule manipulation and detection. Acta Biochim Biophys Sin 50:231–7

    Article  CAS  PubMed  Google Scholar 

  16. Kotsifaki D, Makropoulou M, Serafetinides AA (2007) Ultra-violet laser microbeam and optical trapping for cell micromanipulation. In: Saratov fall meeting 2006: optical technologies in biophysics and medicine VIII, vol 6535. SPIE‏

  17. Kotsifaki DG et al (2017) Geometrical effect characterization of femtosecond-laser manufactured glass microfluidic chips based on optical manipulation of submicroparticles. Opt Eng 56(12):124111–124111

    Article  Google Scholar 

  18. Ashkin A (2011) Editorial: light and life. Laser Photonics Rev 5:A7-8

    Article  Google Scholar 

  19. Ashkin A (1997) Optical trapping and manipulation of neutral particles usinglasers. Proc Natl Acad Sci USA 94:4853–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Kotsifaki DG et al (2014) Enhanced optical forces in plasmonic microstructures. In: International Multidisciplinary Microscopy Congress: Proceedings of Inter M, Antalya, Turkey, October 10–13, 2013. Cham: Springer International Publishing

  21. Shoji T, Tsuboi Y (2014) Plasmonic optical tweezers toward molecular manipulation: tailoring plasmonic nanostructure, light source, and resonant trapping. The journal of physical chemistry letters. 5(17):2957–2967

    Article  CAS  PubMed  Google Scholar 

  22. Novotny L, Bian RX, Xie XS (1997) Theory of nanometric optical tweezers. Phys Rev Lett 79(4):645

    Article  CAS  Google Scholar 

  23. Zhao Y et al (2017) Nanoscopic control and quantification of enantioselective optical forces. Nat Nanotechnol 12(11):1055–1059

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Prinz E et al (2023) Orbital angular momentum in nanoplasmonic vortices. ACS Photonics 10(2):340–367

    Article  CAS  Google Scholar 

  25. Garcés-Chávez V, Quidant R, Reece PJ, Badenes G, Torner L, Dholakia K (2006) Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys Rev B 73:085417

    Article  Google Scholar 

  26. Pang Y, Gordon R (2011) Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. Nano Lett 11:3763–7

    Article  CAS  PubMed  Google Scholar 

  27. Sidorov AR, Zhang Y, Grigorenko AN, Dickinson MR (2007) Nanometric laser trapping of microbubbles based on nanostructured substrates. Opt Commun 278:439–44

    Article  CAS  Google Scholar 

  28. Grigorenko AN, Roberts NW, Dickinson MR, Zhang Y (2008) Nanometric optical tweezers based on nanostructured substrates. Nat Photonics 2:365–70

    Article  CAS  Google Scholar 

  29. Svoboda K, Block SM (1994) Optical trapping of metallic Rayleigh particles. Opt Lett 19(13):930–932

    Article  CAS  PubMed  Google Scholar 

  30. Novotny L, Stranick SJ (2006) Annu Rev Phys Chem 57:303–331

    Article  CAS  PubMed  Google Scholar 

  31. Maximiano RV, Beams R, Novotny L, Jorio A, Cançado LG (2012) Phys Rev B 85:235434

    Article  Google Scholar 

  32. Rogov AM, Gazizov AR, Kharintsev SS, Kh Salakhov M (2014) J Phys: Conf Ser 560:012008

    Google Scholar 

  33. Kharintsev SS et al (2013) Plasmonic optical antenna design for performing tip-enhanced Raman spectroscopy and microscopy. J Phys D: Appl Phys 46(14):145501

    Article  Google Scholar 

  34. Ropers C et al (2007) Grating-coupling of surface plasmons onto metallic tips: a nanoconfined light source. Nano Lett 7(9):2784–2788

    Article  CAS  PubMed  Google Scholar 

  35. Lu F et al (2019) Grating-assisted coupling enhancing plasmonic tip nanofocusing illuminated via radial vector beam. Nanophotonics 8(12):2303–2311

    Article  CAS  Google Scholar 

  36. Schmidt S et al (2012) Adiabatic nanofocusing on ultrasmooth single-crystalline gold tapers creates a 10-nm-sized light source with few-cycle time resolution. ACS Nano 6(7):6040–6048

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the academic support and cooperation of Shahed University and Kazan Federal University.

Author information

Authors and Affiliations

Authors

Contributions

A.A.K. has been longly doing research on ZnS quantum dots and synthesis of ZnS quantum dots with sizes below 5 nm which are his specific research work as a teacher and researcher at Shahed University. M.Z. is a Ph.D. research student at Kazan Federal University, and his contribution to this work is mainly concentrated on gold tip corrugated optical antennas, as a part of his PhD research plan. M.M. has been associated in this work as a coworker with M.Z. in making the tip antennas and simulation processes also. M.M.F. as a reputed professor has contributed effectively as a consultant in this work especially in analyzing data. A.G. and M.S. are both the research guides of M.Z.’s PhD work.

Corresponding author

Correspondence to Ali Azam Khosravi.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khosravi, A.A., Zohrabi, M., Mowlavi, M. et al. Corrugated Gold Tip as Optical Tweezers to Apply Force on Zinc Sulphide Quantum Dot Nanoparticle. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02272-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02272-x

Keywords

Navigation