Skip to main content
Log in

Anomalous Photoluminescence Behavior and Judd–Ofelt Analysis of Erbium-Barium Borate Glass Embedded with Copper Oxide Nanoclusters

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Glasses doped with rare earth elements have been extensively researched for the purpose of creating novel and effective photonic devices. The impact of the LSPR of metallic nanoparticles on rare earth–doped glass for manipulating luminescent properties is a new matter of study. As a result, the localized surface plasmon resonance (LSPR) of metallic nanoparticles (NPs) in amorphous materials may create new opportunities in the disciplines of optics and photonics. Therefore, erbium-barium borate glasses with a 60B2O3-38.5BaO-1.5Er2O3-xCu2O-xSnO (x = 0, 1, 2, 3, 4, 5 mol%) composition were synthesized by the melt quenching technique. The synthesized glasses were then preliminarily subjected to HR-TEM, X-ray diffraction (XRD), and Fourier transform infrared (FT-IR) spectroscopic analysis for structural investigation. A consistent linear trend was observed for Cu2O concentrations from 1 to 4 mol%, but a remarkable nonlinear anomaly emerged beyond the threshold concentration of 5 mol% Cu2O. This inflection point played a pivotal role, leading to the formation of Cu0, as confirmed by LSPR in UV–visible spectroscopy, significantly impacting the glass properties. Spectroscopic attributes, including branching ratio and stimulated emission cross section, underwent notable changes, particularly at 5 mol%, showcasing enhanced branching from 13.17 to 19.20% and quantum efficiency from 28.91 to 36%, positioning BEC5 as a promising candidate. The incorporation of copper nanoparticles up to the optimized threshold level allowed for the customization of overall glass attributes. Also, a discernible shift observed in chromaticity coordinates from green to yellow region draws attention to tunable display application. The current study intends to improve the understanding of the interactions between the compositional, structural, and optical properties of copper oxideembedded erbium-barium borate glasses for photonic and lasing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

The dataset utilized and analyzed in the aforementioned research is openly accessible within the manuscript, ensuring transparency without any undisclosed data. The raw data will be made available upon request.

References

  1. Banijamali S (2013) Preparation of glass–ceramic glazes for fast firing applications by CaF2 substitution with B2O3 in the CaO–CaF2–Al2O3–SiO2 system. Ceram Int 39:8815–8822. https://doi.org/10.1016/j.ceramint.2013.04.069

    Article  CAS  Google Scholar 

  2. Gao Y, Hu Y, Ren P, Zhou D, Qiu J (2015) Effect of glass network modifier R2O (R=Li, Na and K) on upconversion luminescence in Er3+/Yb3+ co-doped NaYF4 oxyfluoride glass-ceramics. J Rare Earths 33(8):830–836. https://doi.org/10.1016/S1002-0721(14)60492-0

    Article  CAS  Google Scholar 

  3. Secu M, Secu CE, Ghica C (2011) Eu3+-doped CaF2 nanocrystals in sol–gel derived glass–ceramics. Opt Mater 33:613–617. https://doi.org/10.1016/j.optmat.2010.11.016

    Article  ADS  CAS  Google Scholar 

  4. Bergo P, Pontuschka W, Prison JM (2008) Dielectric properties and physical features of phosphate glasses containing iron oxide. Mater Chem Phys 108:142–146. https://doi.org/10.1016/j.matchemphys.2007.09.021

    Article  CAS  Google Scholar 

  5. Prasad SVGVA, Sahaya Baskaran G, Veeraiah N (2005) Spectroscopic, magnetic and dielectric investigations of BaO–Ga2O3–P2O5 glasses doped by Cu ions. Physica Status Solidi (a) 202(14):2812–2828. https://doi.org/10.1002/pssa.200521131

    Article  ADS  CAS  Google Scholar 

  6. ElBatal HA, Abdelghany AM, Ghoneim NA, ElBatal FH (2014) Effect of 3d-transition metal doping on the shielding behavior of barium borate glasses: a spectroscopic study. Spectrochim Acta Part A Mol Biomol Spectrosc 133:534–541. https://doi.org/10.1016/j.saa.2014.06.044

    Article  ADS  CAS  Google Scholar 

  7. Chandra Sekhar K, Hameed A, Sathe VG, Chary MN, Shareefuddin M (2018) Physical, optical and structural studies of copper-doped lead oxychloro borate glasses. Bull Mater Sci 41(3):79. https://doi.org/10.1007/s12034-018-1604-4

    Article  CAS  Google Scholar 

  8. Dahiya MS, Khasa S, Agarwal A (2015) Physical, thermal, structural and optical absorption studies of vanadyl doped magnesium oxy-chloride bismo-borate glasses. Journal of Asian Ceramic Societies 3(2):206–211. https://doi.org/10.1016/j.jascer.2015.02.006

    Article  Google Scholar 

  9. Upender G, Ramesh S, Prasad M, Sathe VG, Mouli VC (2010) Optical band gap, glass transition temperature and structural studies of (100–2x)TeO2–xAg2O–xWO3 glass system. J Alloy Compd 504(2):468–474. https://doi.org/10.1016/j.jallcom.2010.06.006

    Article  CAS  Google Scholar 

  10. Bhatia B, Parihar V, Singh S, Verma AS (2013) Spectroscopic properties of Pr<SUP>3+</SUP> in lithium bismuth borate glasses. American Journal of Condensed Matter Physics 3(3):80–88

    Google Scholar 

  11. Kaundal RS, Kaur S, Singh N, Singh KJ (2010) Investigation of structural properties of lead strontium borate glasses for gamma-ray shielding applications. J Phys Chem Solids 71(9):1191–1195. https://doi.org/10.1016/j.jpcs.2010.04.016

    Article  ADS  CAS  Google Scholar 

  12. Saeed A, Elbashar YH, El Khameesy SU (2018) A novel barium borate glasses for optical applications. SILICON 10(2):569–574. https://doi.org/10.1007/s12633-016-9492-y

    Article  CAS  Google Scholar 

  13. Meng X, Qiu J, Peng M, Chen D, Zhao Q, Jiang X-W, Zhu C-S (2005) Near infrared broadband emission of bismuth-doped aluminophosphate glass. Opt Express 13:1628–1634. https://doi.org/10.1364/OPEX.13.001628

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Merigeon J, Olfa M, Boulard B, Girtan M (2016) Rare earth down convertor glasses for solar cells encapsulation.

  15. Rao G, Veeraiah N, Yadagiri Reddy P (2003) Luminescence quenching by manganese ions in MO-CaF2-B2O3glasses. Optical Materials - OPT MATER 22:295–302. https://doi.org/10.1016/S0925-3467(02)00237-9

    Article  ADS  CAS  Google Scholar 

  16. Gomes JF, Lima AMO, Sandrini M, Medina AN, Steimacher A, Pedrochi F, Barboza MJ (2017) Optical and spectroscopic study of erbium doped calcium borotellurite glasses. Opt Mater 66:211–219. https://doi.org/10.1016/j.optmat.2017.02.010

    Article  ADS  CAS  Google Scholar 

  17. Abdelghany AM, Behairy A (2020) Optical parameters, antibacterial characteristics and structure correlation of copper ions in cadmium borate glasses. J Market Res 9(5):10491–10497. https://doi.org/10.1016/j.jmrt.2020.07.057

    Article  CAS  Google Scholar 

  18. El-Batal F (2008) Gamma ray interaction with copper-doped sodium phosphate glasses. J Mater Sci 43:1070–1079. https://doi.org/10.1007/s10853-007-2254-x

    Article  ADS  CAS  Google Scholar 

  19. Sułowska J, Wacławska I (2012) Structural role of Cu in the soil active glasses. Processing and Application of Ceramics 6(2):77–82

    Article  Google Scholar 

  20. Bae B-S, Weinberg MC (1991) Oxidation–reduction equilibrium in copper phosphate glass melted in air. J Am Ceram Soc 74(12):3039–3045. https://doi.org/10.1111/j.1151-2916.1991.tb04299.x

    Article  CAS  Google Scholar 

  21. Jiménez JA (2021) Spectroscopic inquiry of CuO-doped borate glasses in the 50B2O3-25Li2O-25BaO ternary. Spectrochim Acta Part A Mol Biomol Spectrosc 262:120113. https://doi.org/10.1016/j.saa.2021.120113

    Article  CAS  Google Scholar 

  22. Jiménez JA (2015) Optical spectroscopy of Cu + /Sm 3+ -activated aluminophosphate glasses: effect of Cu 2+ impurities on the Sm 3+ photoluminescence enhancement. J Alloy Compd 623:401–406. https://doi.org/10.1016/j.jallcom.2014.11.050

    Article  CAS  Google Scholar 

  23. Jiménez JA (2015) Photoluminescence of Eu3+-doped glasses with Cu2+ impurities. Spectrochim Acta Part A Mol Biomol Spectrosc 145:482–486. https://doi.org/10.1016/j.saa.2015.03.047

    Article  ADS  CAS  Google Scholar 

  24. Jiménez JA (2015) UV emission of Gd3+ in the presence of Cu2+: towards luminescence quenching through quantum cutting? ChemPhysChem 16(8):1683–1686. https://doi.org/10.1002/cphc.201500117

    Article  CAS  PubMed  Google Scholar 

  25. Jiménez JA (2020) Excitation-dependent enhancement and quenching of the 1.54 μm emission from Er3+ ions in dichroic Cu nanocomposite glass. Solid State Commun 321:114046. https://doi.org/10.1016/j.ssc.2020.114046

  26. Ingle AI, Shashikala HD, Narayanan MK, Dubeto MT, Gupta S (2023) Optimization and analysis of process parameters of melt quenching technique for multiple performances of rare earth doped barium borate glass synthesis using Taguchi’s design and grey relational approach. Results in Engineering 17:100784. https://doi.org/10.1016/j.rineng.2022.100784

    Article  CAS  Google Scholar 

  27. Jiménez JA (2019) Thermal effects on the surface plasmon resonance of Cu nanoparticles in phosphate glass: impact on Cu + luminescence. Nanoscale Advances 1(5):1826–1832. https://doi.org/10.1039/C8NA00385H

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  28. Jiménez JA (2023) Spectroscopic investigation of neodymium and copper co-doped phosphate glass incorporating plasmonic nanoparticles. The European Physical Journal B 96(7):92. https://doi.org/10.1140/epjb/s10051-023-00564-5

    Article  ADS  CAS  Google Scholar 

  29. Scheide MR, Peterle MM, Saba S, Neto JSS, Lenz GF, Cezar RD, Felix JF, Botteselle GV, Schneider R, Rafique J, Braga AL (2020) Borophosphate glass as an active media for CuO nanoparticle growth: an efficient catalyst for selenylation of oxadiazoles and application in redox reactions. Scientific Reports 10(1):Article 1. https://doi.org/10.1038/s41598-020-72129-w

  30. Ahmad F (2014) Study the effect of alkali/alkaline earth addition on the environment of borochromate glasses by means of spectroscopic analysis. J Alloy Compd 586:605–610. https://doi.org/10.1016/j.jallcom.2013.10.105

    Article  CAS  Google Scholar 

  31. Mohammed B, Jaafar MS, Wagiran H (2017) Effect of Cu2O on the thermoluminescence properties of ZnO-B2O3–SiO2 glass sample. J Lumin 190:228–233. https://doi.org/10.1016/j.jlumin.2017.05.049

    Article  CAS  Google Scholar 

  32. Dan H, Zhou D, Wang R, Jiao Q, Yang Z, Song Z, Yu X, Qiu J (2015) Effect of copper nanoparticles on the enhancement of upconversion in the Tb3+/Yb3+ co-doped transparent glass–ceramics. Opt Mater 39. https://doi.org/10.1016/j.optmat.2014.11.018

  33. Baki SO, Halimah MK (2019) Structural and optical properties of Er3+- doped zinc-titania tellurite glasses. Solid State Phenom. https://doi.org/10.4028/www.scientific.net/SSP.290.9

    Article  Google Scholar 

  34. Bhogi A, Kumar RV, Kistaiah P (2015) Effect of alkaline earths on spectroscopic and structural properties of Cu2+ ions-doped lithium borate glasses. J Non Cryst Solids C (426):47–54. https://doi.org/10.1016/j.jnoncrysol.2015.06.012

  35. Ibrahem M, Dhia A, Mustafa S, Elbashar YH, Hassaan MY, Elokr MM (2013) Effect of Cu ions on the optical properties of glassy filter system. The Egyptian Materials Research Society (EG-MRS) 36(1):1–10. https://doi.org/10.21608/ejs.2013.148379

  36. Farouk M, Samir A, El Okr M (2018) Effect of alkaline earth modifier on the optical and structural properties of Cu2+ doped phosphate glasses as a bandpass filter. Physica B 530:43–48. https://doi.org/10.1016/j.physb.2017.11.013

    Article  ADS  CAS  Google Scholar 

  37. Thakur S, Thakur V, Kaur A, Singh L (2019) Structural, optical and thermal properties of nickel doped bismuth borate glasses. J Non-Cryst Solids 512:60–71. https://doi.org/10.1016/j.jnoncrysol.2019.02.012

    Article  ADS  CAS  Google Scholar 

  38. Azlan MN, Halimah MK, Shafinas SZ, Daud WM (2015) Electronic polarizability of zinc borotellurite glass system containing erbium nanoparticles. Mater Express 5:211–218. https://doi.org/10.1166/mex.2015.1236

    Article  CAS  Google Scholar 

  39. Ardelean I, Lungu R, Păşcuţă P (2007) Structural changes induced by Fe2O3 addition in strontium-borate glass matrix. J Mater Sci: Mater Electron 18(8):837–841. https://doi.org/10.1007/s10854-006-9087-2

    Article  CAS  Google Scholar 

  40. Chowdari BVR, Rong Z (1996) The role of Bi2O3 as a network modifier and a network former in xBi2O3 · (1–x)LiBO2 glass system. Solid State Ionics 90(1):151–160. https://doi.org/10.1016/S0167-2738(96)00411-0

    Article  CAS  Google Scholar 

  41. Saddeek YB, Gaafar MS (2009) Physical and structural properties of some bismuth borate glasses. Mater Chem Phys 115(1):280–286. https://doi.org/10.1016/j.matchemphys.2008.12.004

    Article  CAS  Google Scholar 

  42. Saritha D, Markandeya Y, Salagram M, Vithal M, Singh AK, Bhikshamaiah G (2008) Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses. J Non-Cryst Solids 354(52):5573–5579. https://doi.org/10.1016/j.jnoncrysol.2008.09.017

    Article  ADS  CAS  Google Scholar 

  43. Elsad RA, Abdel-Aziz AM, Ahmed EM, Rammah YS, El-Agawany FI, Shams MS (2021) FT-IR, ultrasonic and dielectric characteristics of neodymium (III)/ erbium (III) lead-borate glasses: experimental studies. J Market Res 13:1363–1373. https://doi.org/10.1016/j.jmrt.2021.05.029

    Article  CAS  Google Scholar 

  44. Sumalatha B, Omkaram I, Rao TR, Raju ChL (2011) Alkaline earth zinc borate glasses doped with Cu2+ ions studied by EPR, optical and IR techniques. J Non-Cryst Solids 357(16):3143–3152. https://doi.org/10.1016/j.jnoncrysol.2011.05.005

    Article  ADS  CAS  Google Scholar 

  45. Mohammed IR (2020) A study on optical, spectroscopic and structural properties of copper-doped calcium lithium borate glasses. J Opt 49(4):556–563. https://doi.org/10.1007/s12596-020-00641-3

    Article  Google Scholar 

  46. Samir A, Hassan MA, Abokhadra A, Soliman LI, Elokr M (2019) Characterization of borate glasses doped with copper oxide for optical application. Opt Quant Electron 51(4):123. https://doi.org/10.1007/s11082-019-1819-7

    Article  CAS  Google Scholar 

  47. Yao ZY, Möncke D, Kamitsos EI, Houizot P, Célarié F, Rouxel T, Wondraczek L (2016) Structure and mechanical properties of copper–lead and copper–zinc borate glasses. J Non-Cryst Solids 435:55–68. https://doi.org/10.1016/j.jnoncrysol.2015.12.005

    Article  ADS  CAS  Google Scholar 

  48. Soltani I, Hraiech S, Horchani-Naifer K, Massera J, Petit L, Férid M (2016) Thermal, structural and optical properties of Er3+ doped phosphate glasses containing silver nanoparticles. J Non-Cryst Solids 438:67–73. https://doi.org/10.1016/j.jnoncrysol.2015.12.022

    Article  ADS  CAS  Google Scholar 

  49. EL-Hady MM, Morshidy HY, Hassan MA (2023) Judd-Ofelt analysis, optical and structural features of borate glass doped with erbium oxide. J Lumin 263:119972. https://doi.org/10.1016/j.jlumin.2023.119972

    Article  CAS  Google Scholar 

  50. Abdedou N, Djouama T, Chalal M, Poulain M, Capoen B, Mahiou R (2019) Synthesis and characterization of Er3+/Cu+-codoped fluorophosphate glasses. J Alloy Compd 790:248–256. https://doi.org/10.1016/j.jallcom.2019.03.129

    Article  CAS  Google Scholar 

  51. Zaman F, Rooh G, Chanthima N, Khan SU, Kim HJ, Kothan S, Chanlek N, Arshad M, Kaewkhao J (2022) Investigation of spectroscopic and photoluminescence properties of erbium doped phosphate (P2O5-K2O3-Al2O3) glasses. J Alloy Compd 893:162215. https://doi.org/10.1016/j.jallcom.2021.162215

    Article  CAS  Google Scholar 

  52. Babu MR, Madhusudhana Rao N, Mohan Babu A (2018) Effect of erbium ion concentration on structural and luminescence properties of lead borosilicate glasses for fiber amplifiers. Luminescence 33(1):71–78. https://doi.org/10.1002/bio.3374

    Article  CAS  PubMed  Google Scholar 

  53. Ashok J, Kumar JS, Graça MPF, Soares MJ, Reddy MS, Sanyal B, Piasecki M, Veeraiah N (2016) Structural influence of Bi3+ ions on physical properties of Na2CuSiO4 glasses photoluminescence and thermoluminescence studies. J Non-Cryst Solids 449:50–54. https://doi.org/10.1016/j.jnoncrysol.2016.07.010

    Article  ADS  CAS  Google Scholar 

  54. Jiménez JA (2014) Luminescent properties of Cu+/Sn2+-activated aluminophosphate glass. Opt Mater 37:347–351. https://doi.org/10.1016/j.optmat.2014.06.024

    Article  ADS  CAS  Google Scholar 

  55. Paulose PI, Jose G, Thomas V, Jose G, Unnikrishnan NV, Warrier MK (2002) Spectroscopic studies of Cu2+ ions in sol-gel derived silica matrix. Bull Mater Sci 25:69–74. https://doi.org/10.1007/BF02704598

    Article  Google Scholar 

  56. Pascuta P, Stefan R, Olar LE, Bolundut LC, Culea E (2020) Effects of copper metallic nanoparticles on structural and optical properties of antimony phosphate glasses co-doped with samarium ions. Materials 13(21):5040. https://doi.org/10.3390/ma13215040

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  57. Rajyasree C, Rao D (2011) Spectroscopic investigations on alkali earth bismuth borate glasses doped with CuO. https://doi.org/10.1016/J.JNONCRYSOL.2010.11.008

    Article  Google Scholar 

  58. Thulasiramudu A, Buddhudu S (2006) Optical characterization of Cu2+ ion-doped zinc lead borate glasses. J Quant Spectrosc Radiat Transfer 97:181–194. https://doi.org/10.1016/j.jqsrt.2005.04.006

    Article  ADS  CAS  Google Scholar 

  59. Zamyatin OA, Plotnichenko VG, Churbanov MF, Zamyatina EV, Karzanov VV (2018) Optical properties of zinc tellurite glasses doped with Cu2+ ions. J Non-Cryst Solids 480:81–89. https://doi.org/10.1016/j.jnoncrysol.2017.08.025

    Article  ADS  CAS  Google Scholar 

  60. Jiménez JA (2017) Eu3+ amidst ionic copper in glass: enhancement through energy transfer from Cu+, or quenching by Cu2+? Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy 173:979–985. https://doi.org/10.1016/j.saa.2016.11.005

    Article  ADS  CAS  Google Scholar 

  61. Jiménez JA,  Darley B (2020) Optical spectroscopy and excited-state dynamics of Eu3+ -doped bismuth borate glasses containing CuO. Chemphyschem: Eur J Chem Phys Phys Chem 21(15):1688–1694. https://doi.org/10.1002/cphc.202000396

  62. Kaufmann J, Rüssel C (2010) Thermodynamics of the Cu+/Cu2+-redox equilibrium in alumosilicate melts. J Non-Cryst Solids 356(33):1615–1619. https://doi.org/10.1016/j.jnoncrysol.2010.06.032

    Article  ADS  CAS  Google Scholar 

  63. Abdullahi I, Hashim S, Ghoshal SK, Sa’adu, L. (2020) Modified structure and spectroscopic characteristics of Sm3+/Dy3+ co-activated barium-sulfur-telluro-borate glass host: role of plasmonic gold nanoparticles inclusion. Opt Laser Technol 132:106486. https://doi.org/10.1016/j.optlastec.2020.106486

    Article  CAS  Google Scholar 

  64. Palani S, Kenison JP, Sabuncu S, Huang T, Civitci F, Esener S, Nan X (2023) Multispectral localized surface plasmon resonance (msLSPR) reveals and overcomes spectral and sensing heterogeneities of single gold nanoparticles. ACS Nano 17(3):2266–2278. https://doi.org/10.1021/acsnano.2c08702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boutinaud P, Parent C, Flem GL, Pedrini C, Moine B (1992) Spectroscopic investigation of the copper (I)-rich phosphate CuZr2(PO4)3. J Phys: Condens Matter 4(11):3031. https://doi.org/10.1088/0953-8984/4/11/026

    Article  ADS  CAS  Google Scholar 

  66. Masai H, Fujiwara T, Matsumoto S, Tokuda Y, Yoko T (2014) Emission property of Sn2+-doped ZnO–P2O5 glass. J Non-Cryst Solids 383:184–187. https://doi.org/10.1016/j.jnoncrysol.2013.04.017

    Article  ADS  CAS  Google Scholar 

  67. Tauc J, Menth A (1972) States in the gap. J Non-Cryst Solids 8–10:569–585. https://doi.org/10.1016/0022-3093(72)90194-9

    Article  ADS  Google Scholar 

  68. Tafida RA, Halimah MK, Muhammad FD, Chan KT, Onimisi MY, Usman A, Hamza AM, Umar SA (2020) Structural, optical and elastic properties of silver oxide incorporated zinc tellurite glass system doped with Sm3+ ions. Mater Chem Phys 246:122801. https://doi.org/10.1016/j.matchemphys.2020.122801

    Article  CAS  Google Scholar 

  69. Azlina Y, Azlan MN, Halimah MK, Umar SA, El-Mallawany R, Najmi G (2019) Optical performance of neodymium nanoparticles doped tellurite glasses. Physica B 577:411784. https://doi.org/10.1016/j.physb.2019.411784

    Article  CAS  Google Scholar 

  70. Mohan S, Kaur S, Kaur P, Singh DP (2018) Spectroscopic investigations of Sm3+-doped lead alumino-borate glasses containing zinc, lithium and barium oxides. J Alloy Compd 763:486–495. https://doi.org/10.1016/j.jallcom.2018.05.319

    Article  CAS  Google Scholar 

  71. Mohan S, Thind KS (2016) Investigation of luminescence and spectroscopic properties of Nd3+ions in cadmium alkali borate glasses. Opt Mater 57:134–139. https://doi.org/10.1016/j.optmat.2016.04.040

    Article  ADS  CAS  Google Scholar 

  72. Thakur S, Aliyu US, Singh L, Thakur V (2022) Effect of Er3+ ions on the structural, optical and Judd-Ofelt (JO) intensity parameters of (Bi2O3-BaTiO3) glass system and their application as fiber-amplifier. Mater Chem Phys 292:126782. https://doi.org/10.1016/j.matchemphys.2022.126782

    Article  CAS  Google Scholar 

  73. Abdullahi I, Hashim S, Ghoshal SK, Sayyed MI (2023) Tailored spectroscopic characteristics of a new type of CuO nanoparticles-inserted borate glass system: samarium concentration tuning effect. Heliyon 9(10):e20262. https://doi.org/10.1016/j.heliyon.2023.e20262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Abdullahi I, Hashim S, Ghoshal SK, Sayyed MI, Thabit HA, Yusof NN (2023) Enhanced up- and down-conversion luminescence from Dy3+-Sm3+ co-doped B2O3-SrCO3-TeO2-Al2O3-MgO glass hosts: effects of CuO nanoparticles embedment. Phys Scr 98(6):065511. https://doi.org/10.1088/1402-4896/acd152

    Article  ADS  Google Scholar 

  75. Uma V, Marimuthu K, Muralidharan G (2019) Effect of modifier oxides (SrO, Al2O3, ZnO, CdO, PbO and Bi2O3) on the luminescence properties of Er3+ doped telluroborate glasses for laser and optical amplifier applications. J Lumin 207:534–544. https://doi.org/10.1016/j.jlumin.2018.12.001

    Article  CAS  Google Scholar 

  76. Carnall WT, Fields PR, Rajnak K (1968) Electronic energy levels in the trivalent lanthanide aquo ions. I. Pr3+, Nd3+, Pm3+, Sm3+, Dy3+, Ho3+, Er3+, and Tm3+. J Chem Phys 49(10):4424–4442. https://doi.org/10.1063/1.1669893

  77. Jlassi I, Elhouichet H, Ferid M, Barthou C (2010) Judd-Ofelt analysis and improvement of thermal and optical properties of tellurite glasses by adding P2O5. J Lumin 130(12):2394–2401. https://doi.org/10.1016/j.jlumin.2010.07.026

    Article  CAS  Google Scholar 

  78. Lakshmi Y, SWAPNA, Dr. K., Reddy, K., Mandalapu, V., Mahamuda, Dr. S., & Rao, A. (2019) Structural and optical NIR studies of Er3+ ions doped bismuth boro tellurite glasses for luminescence materials applications. J Lumin 211:39–47. https://doi.org/10.1016/j.jlumin.2019.03.022

    Article  CAS  Google Scholar 

  79. Azlan MN, Azlina Y, Shaari HR, Nazrin SN, Al-Hada NM, Boukhris I, Umar SA, Zaid MHM, Hisam R, Iskandar SM, Kenzhaliyev BK (2021) Red emission, upconversion and intensity parameters of erbium oxide doped tellurite glass for laser glass. J Mater Sci: Mater Electron 32(19):24415–24428. https://doi.org/10.1007/s10854-021-06917-z

    Article  CAS  Google Scholar 

  80. Swetha BN, Devarajulu G, Keshavamurthy K, Jagannath G, Deepa HR (2021) Enhanced 1.53 µm emission of Er3+ in nano-Ag embedded sodium-boro-lanthanate glasses. J Alloys Compd 856:158212. https://doi.org/10.1016/j.jallcom.2020.158212

  81. Fares H, Elhouichet H, Gelloz B, Férid M (2014) Silver nanoparticles enhanced luminescence properties of Er3+ doped tellurite glasses: effect of heat treatment. J Appl Phys 116(12):123504. https://doi.org/10.1063/1.4896363

    Article  ADS  CAS  Google Scholar 

  82. Li Y-C, Chang Y-H, Lin Y-F, Lin Y-J, Chang Y-S (2006) High color purity phosphors of LaAlGe2O7 doped with Tm3+ and Er3+. Appl Phys Lett 89(8):081110. https://doi.org/10.1063/1.2337275

    Article  ADS  CAS  Google Scholar 

  83. Jiménez JA (2020) In situ-monitored enhancement and quenching effect of Cu nanoclusters on Sm3+ photoluminescence in glass. Phys Lett A 384(5):126117. https://doi.org/10.1016/j.physleta.2019.126117

    Article  CAS  Google Scholar 

  84. Lakshminarayana G, Qiu J, Brik M, Gangadharan A,  Kityk I (2008) Spectral analysis of RE(3+) (RE = Er, Nd, Pr and Ho):GeO(2)-B(2)O(3)-ZnO-LiF glasses. J Phys Condens Matter: An Institute of Physics Journal 20:375104. https://doi.org/10.1088/0953-8984/20/37/375104

  85. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96(11):113002. https://doi.org/10.1103/PhysRevLett.96.113002

    Article  ADS  CAS  PubMed  Google Scholar 

  86. Lakshminarayana G, Jianrong Qiu1, Brik MG, Kumar GA, Kityk IV (2008) Spectral analysis of RE3+ (RE = Er, Nd, Pr and Ho):GeO2–B2O3–ZnO–LiF glasses. IOP Science 20:375104

  87. Machado TM, Falci RF, Silva IL, Anjos V, Bell MJV, Silva MAP (2019) Erbium 1.55μm luminescence enhancement due to copper nanoparticles plasmonic activity in tellurite glasses. Mater Chem Phys 224:73–78. https://doi.org/10.1016/j.matchemphys.2018.11.059

    Article  CAS  Google Scholar 

  88. Machado TM, Falci RF, Andrade GFS, Bell MJV, da Silva MAP (2021) Surface-enhanced fluorescence of erbium ions on copper nanoparticles containing tellurite glasses. Plasmonics 16(1):139–145. https://doi.org/10.1007/s11468-020-01266-9

    Article  CAS  Google Scholar 

  89. Yusof NN, Ghoshal SK, Azlan MN (2017) Optical properties of titania nanoparticles embedded Er3+-doped tellurite glass: Judd-Ofelt analysis. J Alloy Compd 724:1083–1092. https://doi.org/10.1016/j.jallcom.2017.07.102

    Article  CAS  Google Scholar 

  90. Cohen AE (2009) Nanomagnetic control of intersystem crossing. ACS Publications 113:11084–11092

  91. Yaacob SNS, Sahar MR, Noor FM, Rodin NLA, Zain SKM, Buchori PA, Aziz SM, Yusoff NM, Sulhadi S (2021) Comparative spectroscopic studies on luminescence performance of Er3+ doped tellurite glass embedded with different nanoparticles (Ag Co and Fe) at 0.55 μm emission. Solid State Phenom 317:81–86. https://doi.org/10.4028/www.scientific.net/SSP.317.81

    Article  Google Scholar 

  92. Stefan R, Bolundut LC, Pop L, Borodi G, Culea E, Pascuta P (2019) Copper nanoparticles enhanced luminescence of Eu3+ doped lead tellurite glass ceramics. J Non-Cryst Solids 505:9–17. https://doi.org/10.1016/j.jnoncrysol.2018.10.031

    Article  ADS  CAS  Google Scholar 

  93. Lachheb R, Herrmann A, Assadi AA, Reiter J, Körner J, Hein J, Rüssel C, Maâlej R, Damak K (2018) Judd-Ofelt analysis and experimental spectroscopic study of erbium doped phosphate glasses. J Lumin 201:245–254. https://doi.org/10.1016/j.jlumin.2018.03.087

    Article  CAS  Google Scholar 

  94. Jupri SA, Ghoshal SK, Yusof NN, Omar MF, Hamzah K, Krishnan G (2020) Influence of surface plasmon resonance of Ag nanoparticles on photoluminescence of Ho3+ ions in magnesium-zinc-sulfophosphate glass system. Opt Laser Technol 126:106134. https://doi.org/10.1016/j.optlastec.2020.106134

    Article  CAS  Google Scholar 

  95. Qiu J, Miyauchi K, Kawamoto Y, Kitamura N, Qiu J, Hirao K (2002) Long-lasting phosphorescence in Sn2+–Cu2+ codoped silicate glass and its high-pressure treatment effect. Appl Phys Lett 81(3):394–396. https://doi.org/10.1063/1.1493664

    Article  ADS  CAS  Google Scholar 

  96. Naseer KA, Arunkumar S, Marimuthu K (2019) The impact of Er3+ ions on the spectroscopic scrutiny of bismuth bariumtelluroborate glasses for display devices and 1.53 μm amplification. J Non Cryst Solids 520:119463. https://doi.org/10.1016/j.jnoncrysol.2019.119463

  97. Prabhu NS, Meza-Rocha AN, Soriano-Romero O, Caldiño U, Huerta EF, Falcony C, Sayyed MI, Al-Ghamdi H, Almuqrin AH, Kamath SD (2021) Spectroscopic study of Er3+ doped borate glass system for green emission device, NIR laser, and optical amplifier applications. J Lumin 238:118216. https://doi.org/10.1016/j.jlumin.2021.118216

    Article  CAS  Google Scholar 

  98. Chu Y, Ren J, Zhang J, Liu L, Wang P, Yang J, Peng G, Yuan L (2016) Effects of melting temperature and composition on spectroscopic properties of Er3+-doped bismuth glasses. Optical Materials Express 6(1):279–287. https://doi.org/10.1364/OME.6.000279

    Article  ADS  CAS  Google Scholar 

  99. Oprea I-I, Hesse H, Betzler K (2006) Luminescence of erbium-doped bismuth–borate glasses. Opt Mater 28:1136–1142. https://doi.org/10.1016/j.optmat.2005.07.004

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

Avinash Ishwer Ingle is grateful to the National Institute of Technology Karnataka (NITK) Surathkal, India, for providing an institute fellowship. The author would also like to thank the Central Laboratory for Instrumentation and Facilitation (CLIF) Kariavattom Campus, Trivandrum, for providing the SFS decay lifetime characterization facility.

Author information

Authors and Affiliations

Authors

Contributions

Avinash Ishwer Ingle led the study’s concept, methodology, investigation, visualization, material preparation, data collection, original draft writing, and validation. H.D. Shashikala supervised, edited, and contributed to formal analysis, enhancing the manuscript. Both authors played key, complementary roles in shaping and refining the research.

Corresponding author

Correspondence to Avinash Ingle.

Ethics declarations

Ethics Approval

This declaration is not applicable for this work.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ingle, A., Shashikala, H.D. Anomalous Photoluminescence Behavior and Judd–Ofelt Analysis of Erbium-Barium Borate Glass Embedded with Copper Oxide Nanoclusters. Plasmonics (2024). https://doi.org/10.1007/s11468-024-02226-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11468-024-02226-3

Keywords

Navigation