Skip to main content
Log in

High-performance Thin-Film Solar Solar Cells Based on AlGaAs/GaAs Heterojunction and Localized Surface Plasmon Oscillations

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Traditional solar cells face the challenges of high cost and limited conversion efficiency, which seriously limits their promotion in practical applications. Therefore, this article proposes a novel GaAs thin-film solar cell based on algae’s/GaAs heterojunction. It utilizes the finite difference time domain (FDTD) method to simulate the propagation of electromagnetic waves and the process of light absorption in the cell under specific boundary conditions. The simulation experimental results demonstrate that the introduction of indium tin oxide (ITO) and Ag plasma into solar cell structure significantly enhances the light trapping capability of the cell. Under the irradiation of standard light AM1.5, the proposed cell structure maintains an absorption rate of more than 95% in the wavelength range of 300–743 nm, with an average absorption rate of 97.29%. Especially at the wavelength of 547 nm, it has an absorption rate of up to 99.87%. In addition, the short-circuit current is 30.152 mA/cm2, the open-circuit voltage is 1.226 V, and the photoelectric conversion efficiency (PCE) is increased to 33.22%. The research result indicates when light illuminates the surface of the metal particles after incorporating Ag nanoparticles into the ITO grating, the free electrons within the metal are excited, resulting in a resonance effect. This allows for a highly concentrated and localized electromagnetic wave on the metal surface, which improving the solar cell’s absorption efficiency of sunlight. The research will promote the development of photovoltaic technology and provide an effective strategy and reference for the manufacture of high-performance thin-film solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

Data underlying the results presented in this paper can be obtained from the authors upon reasonable request.

References

  1. Breyer C, Bogdanov D, Gulagi A et al (2017) On the role of solar photovoltaics in global energy transition scenarios. Prog Photovoltaics Res Appl 25(8):727–745

    Article  Google Scholar 

  2. Breyer C, Bogdanov D, Aghahosseini A et al (2018) Solar photovoltaics demand for the global energy transition in the power sector. Prog Photovoltaics Res Appl 26(8):505–523

    Article  Google Scholar 

  3. Zheng Y, Yi Z, Liu L, Wu X, Liu H, Li G, Zeng L, Li H, Wu P (2023) Numerical simulation of efficient solar absorbers and thermal emitters based on multilayer nanodisk arrays. Appl Therm Eng 230:120841

  4. Tilley SD (2019) Recent advances and emerging trends in photo-electrochemical solar energy conversion. Adv Energy Mater 9(2):1802877

    Article  Google Scholar 

  5. Yang F, Liu J, Lu Z et al (2020) Recycled utilization of a nanoporous Au electrode for reduced fabrication cost of perovskite solar cells. Adv Sci 7(6):1902474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song Z, McElvany CL, Phillips AB et al (2017) A technoeconomic analysis of perovskite solar module manufacturing with low-cost materials and techniques. Energy Environ Sci 10(6):1297–1305

    Article  CAS  Google Scholar 

  7. Shah DK, Devendra KC, Parajuli D et al (2022) A computational study of carrier lifetime, doping concentration, and thickness of window layer for GaAs solar cell based on Al2O3 antireflection layer. Sol Energy 234:330–337

    Article  CAS  Google Scholar 

  8. Fathima MI, Wilson KSJ (2023) Investigation on the theory of planar photonic crystal based CZTS/CdS solar cell. Mater Today: Proc 80:1990–1994

    CAS  Google Scholar 

  9. Yao K, Zhong H, Liu Z et al (2019) Plasmonic metal nanoparticles with core–bishell structure for high-performance organic and perovskite solar cells. ACS Nano 13(5):5397–5409

    Article  CAS  PubMed  Google Scholar 

  10. Qingwei Z, Fan W, Fang L, Xianyan H, Chucai G, Zhihong Z (2023) Control of photoelectric properties in all-inorganic CsPbBr3 thin films with two-dimensional interface modification[J]. Infrared Laser Eng 52(6):20230219

  11. Wu Y, Yan X, Wei W et al (2018) Optimization of GaAs nanowire pin junction array solar cells by using AlGaAs/GaAs heterojunctions. Nanoscale Res Lett 13(1):1–7

    Article  Google Scholar 

  12. Gupta ND, Janyani V (2021) Analysis of photonic crystal diffraction grating based light trapping structure for GaAs solar cell. IETE J Res 67(5):714–725

    Article  Google Scholar 

  13. Kunrugsa M (2018) Two-dimensional simulation of GaAsSb/GaAs quantum dot solar cells. J Phys D: Appl Phys 51(22):225101

    Article  Google Scholar 

  14. Jin X, Tang N (2021) ZnO as an anti-reflective layer for GaAs based heterojunction solar cell. Mater Res Express 8(1):016412

    Article  CAS  Google Scholar 

  15. Wu F, Shi P, Yi Z, Li H, Yi Y (2023) Ultra-broadband solar absorber and high-efficiency thermal emitter from UV to mid-infrared spectrum. Micromachines 14(5):985

  16. Wu OK, Rajavel RD, Jensen JE (1996) Status of II–VI molecular-beam epitaxy technology. Mater Chem Phys 43(2):103–107

    Article  CAS  Google Scholar 

  17. Deng Y, Chen W, Li B et al (2020) Physical vapor deposition technology for coated cutting tools: A review. Ceram Int 46(11):18373–18390

    Article  CAS  Google Scholar 

  18. Pearton SJ (1993) Ion implantation in III–V semiconductor technology. Int J Mod Phys B 7(28):4687–4761

    Article  CAS  Google Scholar 

  19. Fan W, Chen Z, Yang S (2016) On the analytical solution of the FDTD method. IEEE Trans Microwave Theory Tech 64(11):3370–3379

    Article  Google Scholar 

  20. Zeng Z, Venuthurumilli PK, Xu X (2021) Inverse design of plasmonic structures with FDTD. ACS Photonics 8(5):1489–1496

    Article  CAS  Google Scholar 

  21. Rassekh M, Shirmohammadi R, Ghasempour R et al (2021) Effect of plasmonic aluminum nanoparticles shapes on optical absorption enhancement in silicon thin-film solar cells. Phys Lett A 408:127509

    Article  CAS  Google Scholar 

  22. Singh G, Verma SS (2019) Plasmon enhanced light trapping in thin film GaAs solar cells by Al nanoparticle array. Phys Lett A 383(13):1526–1530

    Article  CAS  Google Scholar 

  23. Singh G, Verma SS (2018) Enhanced efficiency of thin film GaAs solar cells with plasmonic metal nanoparticles. Energy Sources, Part A 40(2):155–162

    Article  CAS  Google Scholar 

  24. Zhang JJ, Qu ZG, Maharjan A (2019) Numerical investigation of coupled optical-electrical-thermal processes for plasmonic solar cells at various angles of incident irradiance. Energy 174:110–121

    Article  CAS  Google Scholar 

  25. Karpiński K, Zielińska-Raczyńska S, Ziemkiewicz D (2021) Fractional derivative modification of Drude model. Sensors 21(15):4974

    Article  PubMed  PubMed Central  Google Scholar 

  26. Zhu J, Jin G, Qin L (2023) High-efficiency and cost-effective manufacturing of solar cells based on localized surface plasmonic resonance. Opt Mater 141:113897

    Article  CAS  Google Scholar 

  27. Bai X, Hu M, Gang T et al (2020) WITHDRAWN: an air-coupled ultrasonic sensor based on cascaded fibre Bragg grating and Fabry-Perot interference cavity.

  28. Long L, Yang Y, Wang L (2019) Simultaneously enhanced solar absorption and radiative cooling with thin silica micro-grating coatings for silicon solar cells. Sol Energy Mater Sol Cells 197:19–24

    Article  CAS  Google Scholar 

  29. Yuan L, Chen F, Zheng C et al (2012) Parasitic absorption effect of metal nanoparticles in the dye-sensitized solar cells. Phys Status Solidi A 209(7):1376–1379

    Article  CAS  Google Scholar 

  30. Gong H, Cui Z, Shao W et al (2022) Investigation of a novel surface inlay composite nanoparticle based on local surface plasmon resonance-enhanced solar absorption. Renewable Energy 197:452–461

    Article  CAS  Google Scholar 

  31. Cui R, Shen K, Xu M et al (2016) Enhancing photocatalytic activity of ZnO nanowires by embedding ITO layer as a photogenerated electron collecting layer. Mater Sci Semicond Process 43:155–162

    Article  CAS  Google Scholar 

  32. Pil’nik AA, Chernov AA, Islamov DR (2020) Charge transport mechanism in dielectrics: drift and diffusion of trapped charge carriers. Sci Rep 10(1):15759

  33. Elrashidi A (2022) Light harvesting in silicon nanowires solar cells by using graphene layer and plasmonic nanoparticles. Appl Sci 12(5):2519

    Article  CAS  Google Scholar 

  34. Yu M, Li Y, Cheng Q et al (2019) Numerical simulation of graphene/GaAs heterojunction solar cells. Sol Energy 182:453–461

    Article  CAS  Google Scholar 

  35. Wang J (2022) Open‐circuit voltage, fill factor, and heterojunction band offset in semiconductor diode solar cells. EcoMat e12263

  36. Jabeen M, Haxha S (2020) 2D/3D graphene on h-BN interlayer-silicon solar cell with ZnO: Al buffer layer and enormous light captivation using Au/Ag NPs. Opt Express 28(9):12709–12728

    Article  CAS  PubMed  Google Scholar 

  37. Doroody C, Rahman KS, Kiong TS et al (2022) Optoelectrical impact of alternative window layer composition in CdTe thin film solar cells performance. Sol Energy 233:523–530

    Article  CAS  Google Scholar 

  38. van Eerden M, Bauhuis GJ, Mulder P et al (2020) A facile light-trapping approach for ultrathin GaAs solar cells using wet chemical etching. Prog Photovoltaics Res Appl 28(3):200–209

    Article  Google Scholar 

  39. Jamil S, Hiramony NT, Alam MK (2023) Computational investigation of c-GaN/GaAs 1–x N x/GaAs heterojunction solar cell. IEEE Trans Electron Devices 70(3):1121–1127

    Article  CAS  Google Scholar 

  40. Mohamed ET, Maka AOM, Mehmood M et al (2021) Performance simulation of single and dual-junction GaInP/GaAs tandem solar cells using AMPS-1D. Sustainable Energy Technol Assess 44:101067

    Article  Google Scholar 

  41. Sarker K, Sumon M S, Orthe M et al (2023) Numerical simulation of high efficiency environment friendly CuBi 2 O 4-based thin-film solar cell using SCAPS-1D. Int J Photoenergy 2023

Download references

Funding

The study is funded by the National Natural Science Foundation of China (Grant No. 51965007); Guangxi Natural Science Foundation (2023GXNSFAA026015); Open Project Funds for the Key Laboratory of Space Photoelectric Detection and Perception (Nanjing University of Aeronautics and Astronautics), Ministry of Industry and Information Technology (No. NJ2023029-5); Fundamental Research Funds for the Central Universities (NO.NJ2023029).

Author information

Authors and Affiliations

Authors

Contributions

Sunlong Lin: analyzed and interpreted the data; wrote the paper. Jun Zhu: analyzed and interpreted the data. All authors reviewed the manuscript.

Corresponding author

Correspondence to Jun Zhu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, S., Zhu, J. High-performance Thin-Film Solar Solar Cells Based on AlGaAs/GaAs Heterojunction and Localized Surface Plasmon Oscillations. Plasmonics 19, 973–983 (2024). https://doi.org/10.1007/s11468-023-02058-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02058-7

Keywords

Navigation