Skip to main content
Log in

Metamaterial Solar Absorber Based on TiN/TiO2 Multilayer Taper Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The increasing demand for renewable energy has increased in the last decade due to climate change resulting from conventional energy and solar cells become popular. The perfect absorption in solar cells can be achieved with artificially engineered materials at low cost for solar absorbers with high efficiency. A perfect ultra-broadband solar absorber can be achieved by using metamaterial (MM) based on surface plasmon resonance phenomena. We design a near-ideal ultra-broadband plasmonic MM absorber for solar energy harvesting over an ultra-broadband wavelength range (0.4–4 \(\mathrm{\mu m}\)). The structure is made up of periodic taper arrays consisting of a thin, multilayered titanium nitride–titanium dioxide MM. The proposed structure has an absorption greater than 96% between the visible to infrared (IR) regime. It is independent of both polarization and incident angle. The large operational bandwidth, high absorption percentage, and compact thin structure combined with the strong thermal stability of metal TiN make an advantageous choice for solar thermophotovoltaics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Availability of Data and Material

The data and materials will be available upon a valid request to the authors.

References

  1. Wu L, Li Z, Wang W, Chen S, Ruan H (2022) Near-ideal solar absorber with ultra-broadband from UV to MIR. Results Phys 40. https://doi.org/10.1016/j.rinp.2022.105883

  2. Qin F et al (2020) Ultra-broadband and wide-angle perfect solar absorber based on TiN nanodisk and Ti thin film structure. Sol Energy Mater Sol Cells 211. https://doi.org/10.1016/j.solmat.2020.110535

  3. Liu G et al (2019) Near-unity, full-spectrum, nanoscale solar absorbers and near-perfect blackbody emitters. Sol Energy Mater Sol Cells 190:20–29. https://doi.org/10.1016/j.solmat.2018.10.011

    Article  CAS  Google Scholar 

  4. Lin KT, Lin H, Yang T, Jia B (2020) Structured graphene metamaterial selective absorbers for high efficiency and omnidirectional solar thermal energy conversion. Nat Commun 11(1). https://doi.org/10.1038/s41467-020-15116-z

  5. Huaxu L, Fuqiang W, Ziming C, Xuhang S, Han H (2020) Reducing toxicity and enhancing broadband solar energy harvesting of ultra-thin perovskite solar cell via SiO2 nanophotonic structure. Optik (Stuttg) 223. https://doi.org/10.1016/j.ijleo.2020.165624

  6. Li Q, Zhang Y, Wen ZX, Qiu Y (2020) An evacuated receiver partially insulated by a solar transparent aerogel for parabolic trough collector. Energy Convers Manag 214. https://doi.org/10.1016/j.enconman.2020.112911

  7. Yao K, Liu Y (2014) Plasmonic metamaterials. Nanotechnol Rev 3(2):177–210. Walter de Gruyter GmbH. https://doi.org/10.1515/ntrev-2012-0071

  8. Moitra P, Yang Y, Anderson Z, Kravchenko II, Briggs DP, Valentine J. Realization of an all-dielectric zero-index optical metamaterial

  9. Engheta N (2003) Metamaterials with negative permittivity and permeability: background, salient features, and new trends metamaterials with negative permittivity and permeability: background, salient features, and new trends invited-metamaterials with negative permittivity and permeability: background, salient features, and new trends,” 2003. [Online]. Available: http://repository.upenn.edu/ese_papers. PublisherURL: http://ieeexplore.ieee.org/xpl/tocresult.jsp?isNumber=27238&page=2. http://www.ee.upenn.edu/-engheta/

  10. Kumar R, Kumar M, Chohan JS, Kumar S (2022) Overview on metamaterial: history, types and applications. Mater Today Proc 56:3016–3024. https://doi.org/10.1016/j.matpr.2021.11.423

    Article  CAS  Google Scholar 

  11. Wang BX, Huang WQ, Wang LL (2017) Ultra-narrow terahertz perfect light absorber based on surface lattice resonance of a sandwich resonator for sensing applications. RSC Adv 7(68):42956–42963. https://doi.org/10.1039/c7ra08413g

    Article  CAS  Google Scholar 

  12. Luo C et al (2015) Design of a tunable multiband terahertz waves absorber. J Alloys Compd 652:18–24. https://doi.org/10.1016/J.JALLCOM.2015.08.089

    Article  CAS  Google Scholar 

  13. Ke R, Liu W, Tian J, Yang R, Pei W (2020) Dual-band tunable perfect absorber based on monolayer graphene pattern. Results Phys 18:103306. https://doi.org/10.1016/J.RINP.2020.103306

  14. Wu J, Zhang F, Li Q, Chen J, Feng Q, Wu L (2020) Infrared five-band polarization insensitive absorber with high absorptivity based on single complex resonator. Opt Commun 456:124575. https://doi.org/10.1016/J.OPTCOM.2019.124575

  15. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100(20). https://doi.org/10.1103/PhysRevLett.100.207402

  16. Liang C et al (2020) Dual-band infrared perfect absorber based on a Ag-dielectric-Ag multilayer films with nanoring grooves arrays. Plasmonics 15(1):93–100. https://doi.org/10.1007/s11468-019-01018-4

    Article  CAS  Google Scholar 

  17. Shen X, Cui T, Zhao J, Ma HF, Jiang WX, Li H (2011) Polarization-independent wide-angle triple-band metamaterial absorber. Opt Express 19:9401–9407. https://doi.org/10.1364/OE.19.009401

    Article  CAS  PubMed  Google Scholar 

  18. Li M et al (2019) Terahertz wideband perfect absorber based on open loop with cross nested structure. Results Phys 15:102603. https://doi.org/10.1016/j.rinp.2019.102603

  19. Park H, Lee SY, Kim J, Lee B, Kim H (2015) Near-infrared coherent perfect absorption in plasmonic metal-insulator-metal waveguide. Opt Express 23(19):24464–24474

    Article  CAS  PubMed  Google Scholar 

  20. Li W et al (2014) Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv Mater 26(47):7959–7965. https://doi.org/10.1002/adma.201401874

    Article  CAS  PubMed  Google Scholar 

  21. Baqir MA, Choudhury PK (2017) Hyperbolic metamaterial-based UV absorber. IEEE Photonics Technol Lett 29(18):1548–1551. https://doi.org/10.1109/LPT.2017.2735453

    Article  CAS  Google Scholar 

  22. Jaradat HM (2021) Ultra-thin single band metamaterial inspired absorber with suppressed higher order modes for terahertz applications. Opt Mater Express 11(10):3341. https://doi.org/10.1364/ome.435817

    Article  CAS  Google Scholar 

  23. Alitalo P, Tretyakov S (2009) Electromagnetic cloaking with metamaterials. Mater Today 12(3):22–29. https://doi.org/10.1016/S1369-7021(09)70072-0

    Article  Google Scholar 

  24. Kumar R, Singh BK, Pandey PC (2022) Broadband metamaterial absorber in the visible region using a petal-shaped resonator for solar cell applications. Phys E Low Dimens Syst Nanostruct 142:115327. https://doi.org/10.1016/J.PHYSE.2022.115327

  25. Abdulkarim YI et al (2020) Design and study of a metamaterial based sensor for the application of liquid chemicals detection. J Market Res 9(5):10291–10304. https://doi.org/10.1016/J.JMRT.2020.07.034

    Article  CAS  Google Scholar 

  26. Lei L, Li S, Huang H, Tao K, Xu P (2018) Ultra-broadband absorber from visible to near-infrared using plasmonic metamaterial. Opt Express 26(5):5686–5693. https://doi.org/10.1364/OE.26.005686

    Article  CAS  PubMed  Google Scholar 

  27. Wang J, Zhu M, Sun J, Yi K, Shao J (2016) A broadband polarization-independent perfect absorber with tapered cylinder structures. Opt Mater (Amst) 62:227–230. https://doi.org/10.1016/j.optmat.2016.10.002

    Article  CAS  Google Scholar 

  28. Yu P et al (2020) Ultra-wideband solar absorber based on refractory titanium metal. Renew Energy 158:227–235. https://doi.org/10.1016/J.RENENE.2020.05.142

    Article  CAS  Google Scholar 

  29. Sun P et al (2023) Metamaterial ultra-wideband solar absorbers based on a multi-layer structure with cross etching. Phys Chem Chem Phys. https://doi.org/10.1039/D2CP05901K

  30. Mehrabi S, Rezaei MH, Zarifkar A (2019) Ultra-broadband solar absorber based on multi-layer TiN/TiO 2 structure with near-unity absorption. Journal of the Optical Society of America B 36(9):2602. https://doi.org/10.1364/josab.36.002602

    Article  CAS  Google Scholar 

  31. Wu D et al (2018) Numerical study of a wide-angle polarization-independent ultra-broadband efficient selective metamaterial absorber for near-ideal solar thermal energy conversion. RSC Adv 8(38):21054–21064. https://doi.org/10.1039/C8RA01524D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mehrabi S, Bilal RMH, Naveed MA, Ali MM (2022) Ultra-broadband nanostructured metamaterial absorber based on stacked square-layers of TiN/TiO 2. Opt Mater Express 12(6):2199. https://doi.org/10.1364/ome.459766

    Article  CAS  Google Scholar 

  33. Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352. https://doi.org/10.1016/j.solmat.2017.12.033

    Article  CAS  Google Scholar 

  34. Zheng Y et al (2022) High efficiency titanium oxides and nitrides ultra-broadband solar energy absorber and thermal emitter from 200 nm to 2600 nm. Opt Laser Technol 150:108002. https://doi.org/10.1016/j.optlastec.2022.108002

  35. Ansys Lumerical FDTD. Simulation for photonic components. https://www.ansys.com/products/photonics/fdtd. Accessed 15 Apr 2023

  36. Palik ED (1998) Handbook of optical constants of solids, vol 3. Academic

Download references

Funding

No funding.

Author information

Authors and Affiliations

Authors

Contributions

Y.E. and H.D. conceptualized the manuscript. Mustafa Ramzi performed the simulation and wrote the original manuscript. H.D. and Y.E. analyzed the data and supervised the entire work. All the authors read and approved the final manuscript.

Corresponding authors

Correspondence to Yasa Ekşioğlu or Habibe Durmaz.

Ethics declarations

Ethical Approval

All the authors declare that this manuscript is original has not been published before and is not currently being considered for publication elsewhere. This paper does not contain any studies on human participants or animals performed by any of the authors.

Consent to Participate

This is not applicable.

Consent for Publication

This is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

M-Ramzi, M.I., Ekşioğlu, Y. & Durmaz, H. Metamaterial Solar Absorber Based on TiN/TiO2 Multilayer Taper Structure. Plasmonics 19, 995–1002 (2024). https://doi.org/10.1007/s11468-023-02050-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02050-1

Keywords

Navigation