Skip to main content
Log in

Two-step Laser Ablation in Liquid-assisted Magnetic Fields for Synthesis Au:Pb Core/Shell NPs in Developing High-Performance Silicon-based Heterojunction Photodetector

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The appealing fundamental, optical, and electrical characteristics of the core–shell configuration make it a potential problem in optoelectronic devices. By altering the preparation conditions, core–shell photovoltaic devices with high performance can be produced. This study describes laser ablation in liquid at 1064 nm for the fabrication of Au:Pb NPs heterojunction photodetectors. It was investigated the properties of the Au:Pb NPs core/shell were affected by an external magnetic field with laser ablation, the addition of a magnetic field enhances the core–shell’s crystallinity. The optical energy gap for Au:Pb nanoparticles rises from 2.069 to 2.084 eV in the presence of magnetic field. Applied magnetic field during the laser ablation process, leading to an increase in the concentration and decrease in the size of nanoparticles, which led to the increase absorbance, and higher efficiency of removal was with the magnetic field strength 250 mT. The product’s morphology shows the formation of a core–shell, and when an external magnetic field is applied, particle agglomerations as well as aggregation are diminished. This work creates and characterizes the Au:Pb/porous silicon (PS) photodetector via photodetector properties that were greatly enhanced by the magnetic field. The responsivity (Rλ) of the photodetector increased from 0.210 to 0.365 A/W at λ = 450 nm by increasing the magnetic field. Nevertheless, the resultant’s Au:Pb/PS showed the optimal stability of the photocurrent, indicating that Au:Pb NPs deposition can improve the stability of PS opto-electrical characteristics. Finally, the results showed a powerful, noticeable improvement with the presence of the magnetic field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The authors agree to properly credit Plasmonics as the original place of datasets used can be accessed.

References

  1. Hanzic N, Jurkin T, Maksmovic A, Gotic M (2015) The synthesis of gold nanoparticles by citrate-radiolytical method. J Radiat Phys Chem 106:77–82

    Article  ADS  CAS  Google Scholar 

  2. Abed M, Mutlak FA-H, Ahmed A, Nayef U, Abdulridha S, Jabir M (2021) Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. J Phys Conf Ser 1795

    Article  CAS  Google Scholar 

  3. Sainato M, Strambini L, Rella S, Mazzotta E, Barillaro G (2015) Sub-parts per million NO2 chemi-transistor sensors based on composite porous silicon/gold nanostructures prepared by metal-assisted etching. ACS Appl Mater Interfaces 7:7136–7145

    Article  CAS  PubMed  Google Scholar 

  4. Ahmed A, Abdulameer M, Kadhim M, Mutlak F (2022) Plasma parameters of Au nano-particles ablated on porous silicon produced via Nd-YAG laser at 355 nm for sensing NH3 gas. Optik 249

    Article  ADS  CAS  Google Scholar 

  5. He L, Jia Z, Zhou J, Zhang H, Lv X, Sun D (2017) Enhancement of the quantum dot fluorescence intensity by Au nanoparticle decoration of a porous silicon photonic crystal. Appl Phys B Lasers Opt 123:153

    Article  ADS  Google Scholar 

  6. Sunatkari A, Talwatkar S, Tamgadge Y, Muley G (2015) Synthesis, characterization and optical properties of L-arginine stabilized gold nanocolloids. J Nanosci Nanotechnol 5(2):30–35

    CAS  Google Scholar 

  7. Murawska M, Skrzypczak A, Kozak M (2012) Structure and morphology of gold nanoparticles in solution studied by TEM. SAXS and UV-Vis Acta Physicapolonica 121(4):888–892

    ADS  CAS  Google Scholar 

  8. Mutlak F, Ahmed A, Nyef U, Al-zaidi Q, Abdulridha S (2021) Improvement of absorption light of laser texturing on silicon surface for optoelectronic application. Optik 237:166755. https://doi.org/10.1016/j.ijleo.2021.166755

    Article  ADS  CAS  Google Scholar 

  9. Oh Y, Kim J, Thompson C, Ross C (2013) Templated assembly of Co–Pt nanoparticles via thermal and laser-induced dewetting of bilayer metal films. Nanoscale 5(1):401–407

    Article  ADS  CAS  PubMed  Google Scholar 

  10. Krishna H, Shirato N, Favazza C, Kalyanaraman R (2011) Pulsed laser induced self-organization by dewetting of metallic films. J Mater Res 26(2):154–169

    Article  ADS  CAS  Google Scholar 

  11. Garcia M (2011) Surface plasmons in metallic nanoparticles: fundamentals and applications. J Appl Phys 44:283001–283019

    Google Scholar 

  12. Mutlak FA-H, Jamal R, Ahmed A (2021) Pulsed laser deposition of TiO2 nanostructures for verify the linear and non-linear optical characteristics. Iraqi J Sci 62(2):517–525

    Article  Google Scholar 

  13. Chichkov B, Momma C, Nolte S, Von Alvensleben F, Tünnermann A (1996) Femtosecond, picosecond and nanosecond laser ablation of solids. Appl Phys A 63:109–115

    Article  ADS  Google Scholar 

  14. Feldheim D, Keating C (1998) Self-assembly of single electron transistors and related devise. Chem Soc ReV 27:1–12

    Article  CAS  Google Scholar 

  15. Gittins D, Bethell D, Schifrin D, Nichols R (2000) A nanometre-scale electronic switch consisting of a metal cluster and redox-addressable groups. Nature 408:67–69

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Boyer D, Tamarat P, Maali A, Lounis B, Orrit M (2002) Photothermal imaging of nanometer-sized metal particles among scatterers. Science 297:1160–1163

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Yelin D, Oron D, Thiberge S, Moses E, Silberberg Y (2003) Multiphoton plasmon-resonance microscopy. Opt Express 11(12):1385–1391

    Article  ADS  PubMed  Google Scholar 

  18. Schneider B, Dickinson E, Vach EM, Hoijer J, Howard L (2000) Optical chip immunoassay for hCG in human whole blood. Biosens Bioelectron 2000(15):597–604

    Article  Google Scholar 

  19. Sudeep P, Ipe B, Thomas K, George M, Barazzouk S, Hotchandani S, Kamat P (2002) Fullerene-functionalized gold nanoparticles: a self-assembled photoactive antenna-metal nanocore assembly. Nano Lett 2:29–35

    Article  ADS  CAS  Google Scholar 

  20. Danial M, Astruc D (2004) Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward. Chem Rev 104:293–346

    Article  Google Scholar 

  21. Handley D (1989) Colloidal gold: principles, methods and applications. In: Hayat M (ed). Academic, pp. 1–12

  22. Compagnini G, Fragala ME, D’urso L, Spinella C, Puglisi O, (2001) Formation and characterization of high-density silver nanoparticles embedded in silica thin films by “in situ” self-reduction. J Mater Res 16(10):2934

    Article  ADS  CAS  Google Scholar 

  23. Jwied D, Nayef U, Mutlak FA-H (2021) Preparation and characterization of C: Se nano-rods ablated on porous silicon. Optik 239

    Article  ADS  CAS  Google Scholar 

  24. Abdulhameed NR, Salih HA, Hasson KI, Ali AK (2014) Plasmonic absorption of gold and silver nanoparticles in water. Eng Technol J 32(6 Part B)

  25. Huang X, Hu X, Song S, Mao D, Lee J, Koh K, Chen H (2020) Triple enhanced surface plasmon resonance spectroscopy based on cell membrane and folic acid functionalized gold nanoparticles for dual-selective circulating tumor cell sensing. Sens Actuators B Chem 305

    Article  CAS  Google Scholar 

  26. Chan K, Yang D, Demir B, Mouritz A, Lin H, Jia B, Lau K (2019) Boosting the electrical and mechanical properties of structural dielectric capacitor composites via gold nanoparticle doping. Compos Part B Eng 178

    Article  CAS  Google Scholar 

  27. Idisi D, Ali H, Oke J, Sarma S, Moloi S, Ray S, Strydom A (2019) Electronic, electrical and magnetic behaviours of reduced graphene-oxide functionalized with silica coated gold nanoparticles. Appl Surf Sci 483:106–113

    Article  ADS  CAS  Google Scholar 

  28. Link S, Sayed M (2013) Optical properties and ultrafast dynamics of metallic nanocrystals. Annu Rev Phys Chem 54(1):331–366

    Article  ADS  Google Scholar 

  29. He R, Qian X, Yin J, Zhu Z (2003) Preparation of polychrome silver nanoparticles in different solvents. J Mater Chem 12(12):3783–3786

    Article  Google Scholar 

  30. Das R, Nath S, Chakdar D, Gope G, Bhattacharjee R (2009) Preparation of silver nanoparticles and their characterization. J Nanotechnol 5:1–6

    Google Scholar 

  31. Talib A, Petit C, Pileni M (1998) Optical properties of self-assembled 2D and 3D superlattices of silver nanoparticles. J Phys Chem B 102(12):2214–2220

    Article  Google Scholar 

  32. Kim M, Osone S, Kim T, Higashi H, Seto T (2016) “Synthesis of nanoparticles” by laser ablation: a review. KONA Powder Part J 10(34):80–90

    Google Scholar 

  33. Jwied D, Nayef U, Mutlak FAH (2021) Synthesis of C: Se nanoparticles via laser ablated with magnetic field on porous silicon for gas sensor applications. Optik 24:167207. https://doi.org/10.1016/j.ijleo.2021.167207

    Article  ADS  CAS  Google Scholar 

  34. Sonmez M, Kumar R (2009) Hydrometallurgy 95:53–60

    Article  CAS  Google Scholar 

  35. Sljukić B, Banks CE, Crossley A, Compton RG (2007) Anal Chim Acta 587:240–246

    Article  PubMed  Google Scholar 

  36. Dumbaugh WH, Lapp JC (1992) J Am Ceram Soc 75:2315–2326

    Article  CAS  Google Scholar 

  37. Amiri A, Marziyeh M, Marziyeh S (2016) Electron J Biol 12:110–114

    Google Scholar 

  38. Xiao J, Liu P, Wang CX, Yang GW (2017) External field-assisted laser ablation in liquid: An efficient strategy for nanocrystal synthesis and nanostructure assembly. Prog Mater Sci 87:140–220

    Article  CAS  Google Scholar 

  39. Shaker SS, Ismail RA, Ahmed DS (2022) Preparation of bismuth oxide nanoplatelets/Si photodetector by laser ablation in liquid under effect of an external magnetic field. Silicon 14(1):1–7

    Article  Google Scholar 

  40. Alber AS, Mutlak FAH (2022) A novel laser-assisted approach for synthesis of AuNPs/PS nanostructures as photodetector. J Opt. https://doi.org/10.1007/s12596-022-00958-1

  41. Jwar AJ, Nayef UM, Mutlak FAH (2023) Study effect of magnetic field on Au-TiO2 core–shell nanoparticles via laser ablation deposited on porous silicon for photodetector. Plasmonics 18:595–605. https://doi.org/10.1007/s11468-023-01791-3

  42. Mutlak FA-H (2014) Photovoltaic enhancement of Si micro- and nanostructure solar cells via ultrafast laser texturing. Turk J Phys 38:130

    Article  CAS  Google Scholar 

  43. Harab N, Mutlak F (2021) Efect of etching current density on spectroscopic, structural and electrical properties of porous silicon photodetector. Optik 249

    Article  ADS  Google Scholar 

  44. Khudiar S, Nayef U, Mutlak F (2021) Improvement of spectral responsivity of ZnO nanoparticles deposited on porous silicon via laser ablation in liquid. Optik 244

    Article  ADS  CAS  Google Scholar 

  45. Alber A, Mutlak F (2022) The role of various etching time in Si nanostructures for ultra-high sensitivity photodetector. Optik 265

    Article  ADS  CAS  Google Scholar 

  46. Jwied D, Nayef U, Mutlak F (2021) Improvement of responsivity of C: Se nanoparticles ablated on porous silicon. Optik 241

    Article  ADS  CAS  Google Scholar 

  47. Ahmed A, Yaseen W, Abbas Q, Mutlak F (2021) Plasma treatment effect on SnO2–GO nano-heterojunction: fabrication, characterization and optoelectronic applications. Appl Phys A 127(746)

  48. Abid HM, Nayef UM, Mutlak FAH, Khudhair IM (2018) Fabrication and characterization of porous silicon for humidity sensor application. Iraqi J Phys 16:162–170

    Google Scholar 

  49. Harb N, Mutlak F (2021) Production and characterization of porous silicon via laser-assisted etching: Effect of gamma irradiation. Optik 246

    Article  ADS  CAS  Google Scholar 

  50. Khalaf MA, Ahmed BM, Adim KA (2020) Spectroscopic analysis of CdO1-x: Snx plasma produced by Nd-YAG laser. Iraqi J Sci 61(7):1665–1671

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank University of Baghdad—Iraq for the logistic supports this work.

Author information

Authors and Affiliations

Authors

Contributions

Z. Hameed: conceptualization, preparation samples, writing—original draft, visualization; F. Mutlak: investigation, analysis, validation, methodology, reviewing, and editing.

Corresponding author

Correspondence to Falah A.-H. Mutlak.

Ethics declarations

Ethical Approval

This material is the authors' own original work, which has not been previously published elsewhere. The paper is not currently being considered for publication elsewhere.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hameed, Z.A.A., Mutlak, F.AH. Two-step Laser Ablation in Liquid-assisted Magnetic Fields for Synthesis Au:Pb Core/Shell NPs in Developing High-Performance Silicon-based Heterojunction Photodetector. Plasmonics 19, 457–469 (2024). https://doi.org/10.1007/s11468-023-02010-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02010-9

Keywords

Navigation