Skip to main content
Log in

Fano Resonance Based on Coupling Between Nanoring Resonator and MIM Waveguide for Refractive Index Sensor

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Fano resonance is a sharp and asymmetric spectral feature that can be used for refractive index sensing. In this paper, we propose a Fano resonance sensor based on the coupling between a nanoring resonator and a metal-insulator-metal (MIM) waveguide. The nanoring resonator is fabricated in the middle of the MIM waveguide, and the two structures are coupled with high-field confinement. The transmission spectrum of the coupled structure shows a Fano resonance, which is sensitive to the refractive index of the surrounding medium. The sensitivity of the sensor is estimated to be 1700 nm/RIU, which is comparable to the sensitivities of other Fano resonance sensors. In addition, the designed sensor achieves the first-ever FOM and Q factor values of 4300.25 RIU−1 and 4310, respectively, for plasmonic MIM sensors. The proposed sensor is simple to fabricate and can be used for a wide range of refractive index sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Wang L, Zeng YP, Wang ZY, Xia XP, Liang QQ (2016) The energy separation effect based on the disk resonance multichannel MIM waveguide. Mod Phys Lett B 30(28):1650344

    Article  CAS  Google Scholar 

  2. Xie YY, He C, Li JC, Song TT, Zhang ZD, Mao Q-R (2016) Theoretical investigation of a plasmonic demultiplexer in MIM waveguide crossing with multiple side-coupled hexagonal resonators. IEEE Photonics J 8(5):1–12

    Article  Google Scholar 

  3. Livani AM, Kaatuzian H (2017) Modulation–frequency analysis of an electrically pumped plasmonic amplifier. Plasmonics 12:27–32

    Article  CAS  Google Scholar 

  4. Kaatuzian H, Taheri AN (2015) Applications of nano-scale plasmonic structures in design of stub filters—a step towards realization of plasmonic switches. Photon Crystals 93

  5. Zheng G, Chen Y, Xu L, Lai M, Liu Y (2013) Metal–insulator–metal waveguide-based band-pass filter with circular ring resonator containing Kerr nonlinear medium. Opt Commun 305:164–169

    Article  CAS  Google Scholar 

  6. Rastegar Pashaki E, Kaatuzian H, Mallah Livani A (2019) Hydrodynamic analysis and responsivity improvement of a metal/semiconductor/metal plasmonic detector. Plasmonics 14:1639–1648

    Article  CAS  Google Scholar 

  7. Lee TW, Kwon SH (2015) Dual-function metal–insulator–metal plasmonic optical filter. IEEE Photonics J 7(1):1–8

    Google Scholar 

  8. Khani S, Danaie M, Rezaei P (2018) Realization of single-mode plasmonic bandpass filters using improved nanodisk resonators. Opt Commun 420:147–156

    Article  CAS  Google Scholar 

  9. Lai W, Wen K, Lin J, Guo Z, Hu Q, Fang Y (2018) Plasmonic filter and sensor based on a subwavelength end-coupled hexagonal resonator. Appl Opt 57(22):6369–6374

    Article  CAS  PubMed  Google Scholar 

  10. Mao J, Zhai X, Wang L, Li H (2017) Numerical analysis of near-infrared plasmonic filter with high figure of merit based on Fano resonance. Appl Phys Express 10(8):082201

    Article  Google Scholar 

  11. Taheri AN, Kaatuzian H (2015) Numerical investigation of a nano-scale electro-plasmonic switch based on metal-insulator-metal stub filter. Opt Quant Electron 47:159–168

    Article  CAS  Google Scholar 

  12. Khani S, Danaie M, Rezaei P (2020) Compact and low-power all-optical surface plasmon switches with isolated pump and data waveguides and a rectangular cavity containing nano-silver strips. Superlattices Microstruct 141:106481

    Article  CAS  Google Scholar 

  13. Armaghani S, Khani S, Danaie M (2019) Design of all-optical graphene switches based on a Mach-Zehnder interferometer employing optical Kerr effect. Superlattices Microstruct 135:106244

    Article  CAS  Google Scholar 

  14. Danaie M, Shahzadi A (2019) Design of a high-resolution metal–insulator–metal plasmonic refractive index sensor based on a ring-shaped Si resonator. Plasmonics 14(6):1453–1465

    Article  CAS  Google Scholar 

  15. Lin Q et al (2016) A novel design of plasmon-induced absorption sensor. Appl Phys Express 9(6):062002

    Article  Google Scholar 

  16. Bensalah H, Hocini A, Bahri H (2022) Design and analysis of a mid-infrared ultra-high sensitive sensor based on metal-insulator-metal structure and its application for temperature and detection of glucose. Prog Electromagn Res M 112

  17. Brahmkhatri V, Pandit P, Rananaware P, D’Souza A, Kurkuri MD (2021) Recent progress in detection of chemical and biological toxins in water using plasmonic nanosensors. Trends Environ Anal Chemi 30:e00117

  18. Ebadi SM, Örtegren J, Bayati MS, Ram SB (2020) A multipurpose and highly-compact plasmonic filter based on metal-insulator-metal waveguides. IEEE Photonics J 12(3):1–9

    Article  Google Scholar 

  19. Bahri H et al (2022) A high-sensitivity biosensor based on a metal–insulator–metal diamond resonator and application for biochemical and environment detections. Optik 271:170083

    Article  CAS  Google Scholar 

  20. Salah HB, Bahri H, Hocini A, Zegaar I, Ingebrandt S, Pachauri V (2022) Design of a plasmonic sensor based on a nanosized structure for biochemical application. In: Journal of Physics: Conference Series, vol 2240, 1st edn. IOP Publishing, p 012021

  21. Abd-Elnaiem AM, Mohamed ZEA, Elshahat S, Almokhtar M, Norek M (2023) Recent progress in the fabrication of photonic crystals based on porous anodic materials. Energies 16(10):4032

    Article  CAS  Google Scholar 

  22. Elshahat S, Mohamed ZEA, Abd-Elnaiem AM, Ouyang Z, Almokhtar M (2022) One-dimensional topological photonic crystal for high-performance gas sensor. Micro Nanostructures 172:207447

  23. Khani S, Afsahi M (2023) Optical refractive index sensors based on plasmon-induced transparency phenomenon in a plasmonic waveguide coupled to stub and nano-disk resonators. Plasmonics 18(1):255–270

    Article  CAS  Google Scholar 

  24. Fang Y et al (2019) Multiple Fano resonances based on end-coupled semi-ring rectangular resonator. IEEE Photonics J 11(4):1–8

    Article  CAS  Google Scholar 

  25. Al-mahmod MJ, Hyder R, Islam MZ (2017) Numerical studies on a plasmonic temperature nanosensor based on a metal-insulator-metal ring resonator structure for optical integrated circuit applications. Photonics Nanostructures-Fundam Appl 25:52–57

    Article  Google Scholar 

  26. Wang M, Zhang M, Wang Y, Zhao R, Yan S (2019) Fano resonance in an asymmetric MIM waveguide structure and its application in a refractive index nanosensor. Sensors 19(4):791

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hajshahvaladi L, Kaatuzian H, Danaie M, Karimi Y (2022) Design of a highly sensitive tunable plasmonic refractive index sensor based on a ring-shaped nano-resonator. Opt Quant Electron 54:1–17

    Article  Google Scholar 

  28. Bensalah H, Hocini A, Bahri H, Khedrouche D, Ingebrandt S, Pachauri V (2022) A plasmonic refractive index sensor with high sensitivity and its application for temperature and detection of biomolecules. J Opt 1–12

  29. Ordal MA et al (1983) Optical properties of the metals al, co, cu, au, fe, pb, ni, pd, pt, ag, ti, and w in the infrared and far infrared. Appl Opt 22(7):1099–1119

    Article  CAS  PubMed  Google Scholar 

  30. Hocini A, Ben Salah H, Khedrouche D, Melouki N (2020) A high-sensitive sensor and band-stop filter based on intersected double ring resonators in metal–insulator–metal structure. Opt Quantum Electron 52:1–10

  31. Elshahat S, Mohamed ZEA, Almokhtar M, Lu C (2022) High tunability and sensitivity of 1D topological photonic crystal heterostructure. J Opt 24(3):035004

    Article  Google Scholar 

  32. Hocini A, Ben Salah H, Temmar MNE (2021) Ultra-high-sensitive sensor based on a metal–insulator–metal waveguide coupled with cross cavity. J Comput Electron 20(3):1354–1362

  33. Luo X et al (2023) High-sensitivity long-range surface plasmon resonance sensing assisted by gold nanoring cavity arrays and nanocavity coupling. Phys Chem Chem Phys 25(13):9273–9281

    Article  CAS  PubMed  Google Scholar 

  34. Le KQ, Ngo QM, Nguyen TK (2016) Nanostructured metal–insulator–metal metamaterials for refractive index biosensing applications: design, fabrication, and characterization. IEEE J Sel Top Quantum Electron 23(2):388–393

    Article  Google Scholar 

  35. Shrivastav AM, Cvelbar U, Abdulhalim I (2021) A comprehensive review on plasmonic-based biosensors used in viral diagnostics. Commun Biol 4(1):70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zafar R, Nawaz S, Singh G, d’Alessandro A, Salim M (2018) Plasmonics-based refractive index sensor for detection of hemoglobin concentration. IEEE Sens J 18(11):4372–4377

    Article  CAS  Google Scholar 

  37. Almawgani AH et al (2023) A photonic crystal based on porous silicon as a chemical sensor for the detection of methanol compound. Indian J Phys 1–10

  38. Taya SA, Shaheen SA (2018) Binary photonic crystal for refractometric applications (TE case). Indian J Phys 92(4):519–527

    Article  CAS  Google Scholar 

  39. Taya S (2018) Ternary photonic crystal with left-handed material layer for refractometric application. Opto-Electron Rev 26(3):236–241

    Article  Google Scholar 

  40. Jung WK, Byun KM (2011) Fabrication of nanoscale plasmonic structures and their applications to photonic devices and biosensors. Biomed Eng Lett 1:153–162

    Article  Google Scholar 

  41. Lee FY, Fung KH, Tang TL, Tam WY, Chan CT (2009) Fabrication of gold nano-particle arrays using two-dimensional templates from holographic lithography. Curr Appl Phys 9(4):820–825

    Article  Google Scholar 

  42. López-Muñoz GA et al (2017) A label-free nanostructured plasmonic biosensor based on Blu-ray discs with integrated microfluidics for sensitive biodetection. Biosens Bioelectron 96:260–267

    Article  PubMed  Google Scholar 

  43. Kazanskiy N, Butt M, Khonina S (2020) Nanodots decorated MIM semi-ring resonator cavity for biochemical sensing applications. Photonics Nanostructures-Fundam Appl 42:100836

  44. Goyal AK, Dutta HS, Singh S, Kaur M, Husale S, Pal S (2016) Realization of large-scale photonic crystal cavity-based devices. J Micro/Nanolithogr MEMS MOEMS 15(3):031608–031608

    Article  Google Scholar 

  45. Dutta HS, Goyal AK, Singh S, Kaur M, Husale S, Pal S (2016) Fabrication of photonic crystal line defect waveguides by use of optical lithography and focused ion beam. In: International Conference on Fibre Optics and Photonics. Optica Publishing Group, p W4E.4

  46. Rohimah S et al (2022) Tunable multiple Fano resonances based on a plasmonic metal-insulator-metal structure for nano-sensing and plasma blood sensing applications. Appl Opt 61(6):1275–1283

    Article  PubMed  Google Scholar 

  47. Khani S, Hayati M (2021) An ultra-high sensitive plasmonic refractive index sensor using an elliptical resonator and MIM waveguide. Superlattices Microstruct 156:106970

    Article  CAS  Google Scholar 

  48. Liu D et al (2019) Plasmon-induced transparency and refractive index sensing based on a trapezoid cavity coupled with a hexagonal resonator. Plasmonics 14:663–671

    Article  Google Scholar 

  49. Shahamat Y, Ghaffarinejad A, Vahedi M (2020) Plasmon induced transparency and refractive index sensing in two nanocavities and double nanodisk resonators. Optik 202:163618

    Article  CAS  Google Scholar 

  50. Alipour A, Mir A, Farmani A (2020) Ultra high-sensitivity and tunable dual-band perfect absorber as a plasmonic sensor. Opt Laser Technol 127:106201

    Article  CAS  Google Scholar 

  51. Chou Chao CT, Chou Chau YF, Chiang HP (2022) Breaking the symmetry of a metal–insulator–metal-based resonator for sensing applications. Nanoscale Res Lett 17(1):48

  52. Bahri H, Mouetsi S, Hocini A, Ben Salah H (2021) A high sensitive sensor using MIM waveguide coupled with a rectangular cavity with Fano resonance. Opt Quantum Electron 53(6):332

    Article  CAS  Google Scholar 

  53. Hassan MF, Sagor RH, Amin MR, Islam MR, Alam MS (2021) Point of care detection of blood electrolytes and glucose utilizing nano-dot enhanced plasmonic biosensor. IEEE Sens J 21(16):17749–17757

    Article  CAS  Google Scholar 

  54. Al Mahmud R, Sagor R, Khan M (2023) Surface plasmon refractive index biosensors: a review of optical fiber, multilayer 2D material and gratings, and MIM configurations. Opt Laser Technol 159:108939

Download references

Acknowledgements

The authors are thankful to the Deanship of Scienti fi c Research at Najran University for funding this work under the Research GroupsFunding program grant code (NU/RG/SERC/12/4).

Funding

The authors are thankful to the Deanship of Scientific Research at Najran University for funding this work under the Research Groups Funding program grant code (NU/RG/SERC/12/4).

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to the paper as follows: study conception and design (Zain Elabdeen A. Mohamed). Software (Zain Elabdeen A. Mohamed). Draft manuscript preparation (Zain Elabdeen A. Mohamed). Editing the final version of the manuscript, correction of the language, response to reviews, and adding new figures to the revised version (Sofyan A. Taya, Abdulkarem H. M. Almawgani, Ayman Taher Hindi). All authors reviewed the results and approved the final version of the manuscript.

Corresponding author

Correspondence to Zain Elabdeen A. Mohamed.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, Z.E.A., Taya, S.A., Almawgani, A.H.M. et al. Fano Resonance Based on Coupling Between Nanoring Resonator and MIM Waveguide for Refractive Index Sensor. Plasmonics 19, 567–575 (2024). https://doi.org/10.1007/s11468-023-02009-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02009-2

Keywords

Navigation