Skip to main content
Log in

Assembly Nanoparticle Arrays Decorated with Ultrathin AAO Nanopores for Highly Sensitive SERS Substrate

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface-enhanced Raman scattering (SERS) is widely employed because it offers quick, microscopic, and traceless detection. This study used high-voltage and low-voltage ultrasonic oscillation to embed gold-silver nanoparticles (Au-Ag NPs) into the pores of chemically modified ultrathin anodic alumina (AAO) films, resulting in a highly sensitive three-dimensional SERS substrate. We improved the substrate’s stability and Raman activity by adjusting the particle alloy ratio. For the substrate in this alloy ratio, the Raman signal of probe molecules (Rh6G) adsorbed on the substrate surface is enhanced. the enhancement factor (EF) was as high as 1.40 × 107, the relative standard deviation (RSD) of 10.6%, and the concentration of Rh6G shows a linear relationship with Raman intensity, with a linear correlation coefficient of 0.961. In addition, we evaluated the substrate’s detection effect on thiram molecules. It has been proven that this structure has good practicality and high sensitivity as a Raman enhanced substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Ding S, Yi J, Li J, Ren B, Wu D, Panneerselvam R, Tian Z (2016) Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat Rev Mater 1:1–16. https://doi.org/10.1038/natrevmats.2016.21

    Article  CAS  Google Scholar 

  2. Dong J, Zhao X, Cao E, Han Q, Liu L, Zhang W, Gao W, Shi J, Zheng Z, Han D, Sun M (2020) Flexible and transparent Au nanoparticle/graphene/Au nanoparticle ‘sandwich’ substrate for surface-enhanced Raman scattering. M T Nano 9:100067. https://doi.org/10.1016/j.mtnano.2019.100067

  3. Hutter E, Fendler JH (2004) Exploitation of localized surface plasmon resonance. Adv Mater 16:1685–1706. https://doi.org/10.1002/adma.200400271

    Article  CAS  Google Scholar 

  4. Zhang C, Li Z, Qiu S, Lu W, Shao M, Ji C, Wang G, Zhao X, Yu J, Li Z (2022) Highly ordered arrays of hat-shaped hierarchical nanostructures with different curvatures for sensitive SERS and plasmon-driven catalysis. Nanophotonics 11:33–44. https://doi.org/10.1515/nanoph-2021-0476

    Article  CAS  Google Scholar 

  5. Cao Y, Sun M (2022) Tip-enhanced Raman spectroscopy. Rev Phy 8:100067. https://doi.org/10.1016/j.revip.2022.100067

  6. Dong J, Zhou W, Yang C, Wu H, Han Q, Zhang C, Gao W, Yan X, Sun M (2023) Preparation of a three-dimensional composite structure based on a periodic Au@Ag core–shell nanocube with ultrasensitive surface-enhanced Raman scattering for rapid detection. ACS Appl Mater Interfaces 15(23):28840–28848. https://doi.org/10.1021/acsami.3c05488

    Article  CAS  PubMed  Google Scholar 

  7. Dai Z G, Xiao X H, Wu W, Zhang Y, Liao L, Guo S, Ying J, Shan C, Sun M, Jiang C (2015) Plasmon-driven reaction controlled by the number of graphene layers and localized surface plasmon distribution during optical excitation. Light Sci Appl 4:e342. https://doi.org/10.1038/lsa.2015.115

  8. Lin X, Fang G, Liu Y, He Y, Wang L, Dong B (2020) Marangoni effect-driven transfer and compression at three-phase interfaces for highly reproducible nanoparticle monolayers. J Phys Chem Lett 11:3573–3581. https://doi.org/10.1021/acs.jpclett.0c01116

    Article  CAS  PubMed  Google Scholar 

  9. Zhao X, Dong J, Cao E, Han Q, Gao W, Wang Y, Qi J, Sun M (2019) Plasmon-exciton coupling by hybrids between graphene and Au nanorods vertical array for sensor. Appl Mater Today 14:166–174. https://doi.org/10.1016/j.apmt.2018.12.013

    Article  Google Scholar 

  10. Cao Y, Sun M (2022) Perspective on plexciton based on transition metal dichalcogenides. Appl Phys Lett 120:240501. https://doi.org/10.1063/5.0085435

  11. Zhang X, Zhang X, Luo C, Liu Z, Chen Y, Dong S, Jiang C, Yang S, Wang F, Xiao X (2019) Volume-enhanced Raman scattering detection of viruses. Small 15:1805516. https://doi.org/10.1002/smll.201805516

    Article  CAS  Google Scholar 

  12. Zhang Y, Chen S, Radjenovic P, Bodappa N, Zhang H, Yang Z, Tian Z, Li J (2019) Probing the location of 3D hot spots in gold nanoparticle films using surface-enhanced Raman spectroscopy. Anal Chem 91:5316–5322. https://doi.org/10.1021/acs.analchem.9b00200

    Article  CAS  PubMed  Google Scholar 

  13. Liu H, Yang Z, Meng L, Sun Y, Wang J, Yang L, Liu J, Tia Z (2014) Three-dimensional and time-ordered surface-enhanced Raman scattering hotspot matrix. J Am Chem Soc 136:5332–5341. https://doi.org/10.1021/ja501951v

    Article  CAS  PubMed  Google Scholar 

  14. Qi J, Wang R, Wang Y, Dong J (2023) Electrochemical synthesis of fractal nanostructures for efficient surface-enhanced Raman spectroscopy. Plasmonics 18:1287–1295. https://doi.org/10.1007/s11468-023-01859-0

    Article  CAS  Google Scholar 

  15. Kozhukhova A, Preez S, Bessarabov D (2019) Preparation of anodized aluminium oxide at high temperatures using low purity aluminium (Al6082). Surf Coat Tech 378:124970. https://doi.org/10.1016/j.surfcoat.2019.124970

  16. Shan D, Huang L, Li X, Zhang W, Wang J, Cheng L, Feng X, Liu Y, Zhu J, Zhang Y (2014) Surface plasmon resonance and interference coenhanced SERS substrate of AAO/Al-based Ag nanostructure arrays. J Phys Chem C 118:23930–23936. https://doi.org/10.1021/jp5026152

    Article  CAS  Google Scholar 

  17. Lee W, Park S (2014) Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem Rev 114:7487–7556. https://doi.org/10.1021/cr500002z

    Article  CAS  PubMed  Google Scholar 

  18. Cong V, Ganbold E, Saha J, Jang J, Min J, Choo J, Kim S, Song N, Son S, Lee S, Joo S (2014) Au nanoparticle silica nanopeapods. J Am Chem Soc 136:3833–3841. https://doi.org/10.1021/ja411034q

    Article  CAS  PubMed  Google Scholar 

  19. Huang Z, Meng G, Huang Q, Chen B, Zhu C, Zhang Z (2013) Large-area Ag nanorod array substrates for SERS: AAO template-assisted fabrication, functionalization, and application in detection PCBs. J Raman Spectros 44:240–246. https://doi.org/10.1002/jrs.4184

    Article  CAS  Google Scholar 

  20. Lin B, Kannan P, Qiu B, Lin Z, Guo L (2020) On-spot surface enhanced Raman scattering detection of Aflatoxin B1 in peanut extracts using gold nanobipyramids evenly trapped into the AAO nanoholes. Food Chem 307:125528. https://doi.org/10.1016/j.foodchem.2019.125528

  21. Liu S, Wu J, Wang C, Fang J (2022) Three-dimensional inverted-cone PDA-Ag nanoparticles array with highly-sensitive SERS performance. Opt Mater 131:112693. https://doi.org/10.1016/j.optmat.2022.112693

  22. Belwalkar A, Grasing E, Geertruyden W, Huang Z, Misiolek W (2008) Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes. J Membr Sci 319:192–198. https://doi.org/10.1016/j.memsci.2008.03.044

    Article  CAS  Google Scholar 

  23. Li Y, Ling Z, Hu X, Yisen L, Yi C (2011) Formation and microstructures of unique nanoporous AAO films fabricated by high voltage anodization. J Mater Chem 21:9661–9666. https://doi.org/10.1039/C1JM10781J

    Article  CAS  Google Scholar 

  24. Han H, Park S, Jang J, Ryu H, Kim K, Baik S, Lee W (2013) In situ determination of the pore opening point during wet-chemical etching of the barrier layer of porous anodic aluminum oxide: nonuniform impurity distribution in anodic oxide. ACS Appl Mater Interfaces 5:3441–3448. https://doi.org/10.1021/am400520d

    Article  CAS  PubMed  Google Scholar 

  25. Kim Y, Han Y, Lee H, Le H (2008) High density silver nanowire arrays using self-ordered anodic aluminum oxide (AAO) membrane. J Korean Ceram Soc 45:191–195. https://doi.org/10.4191/kcers.2008.45.4.191

    Article  CAS  Google Scholar 

  26. Athanassiadis A, Ma Z, Moreno-Gomez N, Melde K, Choi E, Goyal R, Fischer P (2022) Ultrasound-responsive systems as components for smart materials. Chem Rev 122:5165–5208. https://doi.org/10.1021/acs.chemrev.1c00622

    Article  CAS  PubMed  Google Scholar 

  27. Kinsler LE, Frey AR (2000) Fundamentals of acoustics. John Wiley & Sons 463:99–111. https://doi.org/10.1109/PROC.1963.2249

    Article  Google Scholar 

  28. Huang Y, Fang Y, Yang Z, Sun M (2010) Can p, p′-Dimercaptoazobisbenzene be produced from p-aminothiophenol by surface photochemistry reaction in the junctions of a Ag nanoparticle-molecule-Ag (or Au) film? J Phys Chem C 114:18263–18269. https://doi.org/10.1021/jp107305z

    Article  CAS  Google Scholar 

  29. Luo Z, Chen K, Lu D (2011) Synthesis of p-aminothiophenol-embedded Au/silver core-shell nanostructures as novel SERS tags for biosensing applications. Microchim Acta 173:149–156. https://doi.org/10.1007/s00604-010-0537-4

    Article  CAS  Google Scholar 

  30. Dong J, Qu S, Zhang Z, Liu M, Liu G, Yan X, Zheng H (2012) Surface enhanced fluorescence on three dimensional silver nanostructure substrate. J Appl Phys 111:093101. https://doi.org/10.1063/1.4709442

  31. Verma M, Newmaia M, Kumar P (2017) Synergistic effect of Au-Ag nano-alloying: intense SEIRA and enhanced catalysis. Dalton T 46:9664–9677. https://doi.org/10.1039/C7DT02130E

    Article  CAS  Google Scholar 

  32. Li L, Lin D, Yang F, Xiao Y, Jiang C (2021) Gold nanoparticle-based peroxyoxalate chemiluminescence system for highly sensitive and rapid detection of thiram pesticides. ACS Appl Nano Mater 4:3932–3939. https://doi.org/10.1021/acsanm.1c00305

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Science Foundation of China (12274341, 12004304), the Shaanxi Province Natural Science Foundation of China (2022JZ-05), the Shaanxi Provincial Research Plan for Young Scientific and Technological New Stars (2021KJXX-45), and the Key R & D project of Shaanxi Province (2022SF-333).

Author information

Authors and Affiliations

Authors

Contributions

Jun Dong put forward ideas, design the experiment and revised the manuscript; Chenlu Li and Yan Wang performed the experiment and wrote the main manuscript text; Yi Cao and Yimeng Fan help to perform the experiment; Qingyan Han, Wei Gao, and Jianxia Qi help to revised the manuscript; and Yongkai Wang performed the simulation work.

Corresponding authors

Correspondence to Jun Dong or Jianxia Qi.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 2909 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, J., Li, C., Wang, Y. et al. Assembly Nanoparticle Arrays Decorated with Ultrathin AAO Nanopores for Highly Sensitive SERS Substrate. Plasmonics 19, 777–784 (2024). https://doi.org/10.1007/s11468-023-02004-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02004-7

Keywords

Navigation