Skip to main content
Log in

Design of Surface Plasmon Resonance–Based Solar Absorber Using Bloom-Shaped Au-InSb-Al Structure

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We have constructed the solar absorber in bloom design in three different layers: the ground layer, substrate layer, and resonator layer. The ground layer uses aluminum (Al), the substrate layer is INDIUM antimonide (InSb), and the bloom resonator is gold (Au). The proposed absorber can be used in the ultraviolet (UV) region, the violet (V) region, the near-infrared (NIR) region, and the middle-infrared (MIR) spectrums. The absorption rate in the UV, V, NIR, and MIR spectrums is 88.8%, 94.2%, 92.8%, and 89.2%, respectively. After final construction, the created structure has an average solar radiation rate of 92% throughout all four zones. At the 800 nm bandwidth, the absorption rate reaches more than 97%, and at the 1500 nm bandwidth, the absorber is above 95%. Step-by-step building and resulting absorption rate (A), reflectance rate (R), and transmittance rate (T) can be explored in each step. The solar radiation with the respective bandwidth range and AM 1.5 situation can be studied. The parameter converting of the ground layer width and ground layer thickness, the substrate layer thickness, and the resonator layer can be studied. Transverse electric mode (TE) and transverse magnetic mode TM can be studied by converting the degrees from 0 to 50° by 10° separation. The quantity of the electric field intensity in color variations can be illustrated. The comparison table of the current absorption rates of the other published works can be presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Aman MM et al (2015) A review of safety, health and environmental (SHE) issues of solar energy system. Renew Sustain Energy Rev 41:1190–1204. https://doi.org/10.1016/j.rser.2014.08.086

    Article  CAS  Google Scholar 

  2. Rabaia MKH et al (2021) Environmental impacts of solar energy systems: a review. Sci Total Environ 754. https://doi.org/10.1016/j.scitotenv.2020.141989

  3. Al-Othman A et al (2022) Artificial intelligence and numerical models in hybrid renewable energy systems with fuel cells: advances and prospects. Energy Convers Manag 253. https://doi.org/10.1016/j.enconman.2021.115154

  4. Camacho EF, Berenguel M (2012) Control of solar energy systems. In IFAC Proceedings Volumes (IFAC-PapersOnline) 8(1):848–855. https://doi.org/10.3182/20120710-4-SG-2026.00181

  5. Kalogirou SA (2015) Building integration of solar renewable energy systems towards zero or nearly zero energy buildings. Int J Low-Carbon Technol 10(4):379–385. https://doi.org/10.1093/ijlct/ctt071

    Article  Google Scholar 

  6. Kabeel AE, Mečárik K (1998) Shape optimization for absorber plates of solar air collectors. Renew Energy 13(1):121–131. https://doi.org/10.1016/S0960-1481(97)00034-7

    Article  Google Scholar 

  7. Tripanagnostopoulos Y, Souliotis M, Nousia T (2000) Solar collectors with colored absorbers. Sol Energy 68(4):343–356. https://doi.org/10.1016/S0038-092X(00)00031-1

    Article  Google Scholar 

  8. Al-Shahri OA et al (2021) Solar photovoltaic energy optimization methods, challenges and issues: a comprehensive review. J Clean Prod 284. https://doi.org/10.1016/j.jclepro.2020.125465

  9. Wang H, Wang L (2013) Perfect selective metamaterial solar absorbers. Opt Express 21(S6):A1078. https://doi.org/10.1364/oe.21.0a1078

    Article  PubMed  Google Scholar 

  10. Cao F, McEnaney K, Chen G, Ren Z (2014) A review of cermet-based spectrally selective solar absorbers. Energy Environ Sci 7(5):1615–1627. https://doi.org/10.1039/c3ee43825b

    Article  CAS  Google Scholar 

  11. He Y, Wang BX, Lou P, Zhu H (2020) Multiple-band absorber enabled by new type of metamaterial resonator formed by metallic split ring embedded with rectangle patch. Results Phys. https://doi.org/10.1016/j.rinp.2020.103251

    Article  Google Scholar 

  12. Patel SK, Charola S, Jani C, Ladumor M, Parmar J, Guo T (2019) Graphene-based highly efficient and broadband solar absorber. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2019.109330

    Article  Google Scholar 

  13. Mastai Y, Polarz S, Antonietti M (2002) Silica-carbon nanocomposites - a new concept for the design of solar absorbers. Adv Funct Mater 12(3):197–202. https://doi.org/10.1002/1616-3028(200203)12:3%3c197::AID-ADFM197%3e3.0.CO;2-A

    Article  CAS  Google Scholar 

  14. (2000) 00/02708 Comparison between predicted and actually observed in-service degradation of a nickel pigmented anodized aluminium absorber coating for solar DHW systems. Fuel Energy Abstr 41(5):301. https://doi.org/10.1016/s0140-6701(00)96621-9

  15. Konttinen P, Lund PD (2004) Microstructural optimization and extended durability studies of low-cost rough graphite-aluminium solar absorber surfaces. Renew Energy 29(6):823–839. https://doi.org/10.1016/j.renene.2003.11.008

    Article  CAS  Google Scholar 

  16. Ozgen F, Esen M, Esen H (2009) Experimental investigation of thermal performance of a double-flow solar air heater having aluminium cans. Renew Energy 34(11):2391–2398. https://doi.org/10.1016/j.renene.2009.03.029

    Article  CAS  Google Scholar 

  17. Kumar SN, Malhotra LK, Chopra KL (1983) Nickel pigmented anodized aluminium as solar selective absorbers. Sol Energy Mater 7(4):439–452. https://doi.org/10.1016/0165-1633(83)90017-5

    Article  CAS  Google Scholar 

  18. Wazwaz A, Salmi J, Bes R (2010) The effects of nickel-pigmented aluminium oxide selective coating over aluminium alloy on the optical properties and thermal efficiency of the selective absorber prepared by alternate and reverse periodic plating technique. Energy Convers Manag 51(8):1679–1683. https://doi.org/10.1016/j.enconman.2009.11.047

    Article  CAS  Google Scholar 

  19. Patel SK, Parmar J, Katrodiya D, Nguyen TK, Holdengreber E, Dhasarathan V (2020) Broadband metamaterial-based near-infrared absorber using an array of uniformly placed gold resonators. J Opt Soc Am B. https://doi.org/10.1364/josab.389283

    Article  Google Scholar 

  20. Kim C, Ryu Y, Shin D, Urbas AM, Kim K (2020) Efficient solar steam generation by using metal-versatile hierarchical nanostructures for nickel and gold with aerogel insulator. Appl Surf Sci 517. https://doi.org/10.1016/j.apsusc.2020.146177

  21. O’Neill P, Ignatiev A, Doland C (1978) The dependence of optical properties on the structural composition of solar absorbers: gold black. Sol Energy 21(6):465–468. https://doi.org/10.1016/0038-092X(78)90069-5

    Article  Google Scholar 

  22. Liu J, Fan L, Ku J, Mao L (2016) Absorber: a novel terahertz sensor in the application of substance identification. Opt Quantum Electron 48(2):2–9. https://doi.org/10.1007/s11082-015-0361-5

    Article  Google Scholar 

  23. Srinivasa Rao A, Sakthivel S (2015) A highly thermally stable Mn-Cu-Fe composite oxide based solar selective absorber layer with low thermal loss at high temperature. J Alloys Compd 644:906–915. https://doi.org/10.1016/j.jallcom.2015.05.038

  24. Patel SK, Charola S, Parmar J, Ladumor M, Ngo QM, Dhasarathan V (2020) Broadband and efficient graphene solar absorber using periodical array of C-shaped metasurface. Opt Quantum Electron. https://doi.org/10.1007/s11082-020-02379-5

    Article  Google Scholar 

  25. Parmar J, Patel SK, Katrodiya D, Nguyen TK, Skibina JS, Dhasarathan V (2020) Numerical investigation of gold metasurface based broadband near-infrared and near-visible solar absorber. Phys B Condens Matter  591:412248. https://doi.org/10.1016/j.physb.2020.412248

  26. Parmar J, Patel SK, Katkar V (2022) Graphene-based metasurface solar absorber design with absorption prediction using machine learning. Sci Rep. https://doi.org/10.1038/s41598-022-06687-6

    Article  PubMed  PubMed Central  Google Scholar 

  27. Han BB, Alsalman O, Surve J, Parmar J, Taya S, Patel SK (2023) Compact size Zr–Fe2O3 inspired metal-dielectric angle and polarization insensitive nanostructure for efficient solar energy absorption. Int J Therm Sci 190:108330. https://doi.org/10.1016/j.ijthermalsci.2023.108330

  28. Ferhati H et al (2021) Absorption enhancement in amorphous Si by introducing RF sputtered Ti intermediate layers for photovoltaic applications. Mater Sci Eng B Solid-State Mater Adv Technol 269. https://doi.org/10.1016/j.mseb.2021.115152

  29. Zhu L, Jin Y, Liu H, Liu Y (2020) Ultra-broadband absorber based on metal-insulator-metal four-headed arrow nanostructure. Plasmonics 15(6):2153–2159. https://doi.org/10.1007/s11468-020-01244-1

    Article  CAS  Google Scholar 

  30. Mansouri M, Mir A, Farmani A (2022) Design and numerical simulation of a MoS2 plasmonic pressure sensor based on surface plasmon resonance and Fabry-Perot interferometer. Plasmonics 17(6):2375–2384. https://doi.org/10.1007/s11468-022-01722-8

    Article  CAS  Google Scholar 

  31. Sassi IA, Ben El Hadj Rhouma M, Daher MG (2023) Highly sensitive refractive index gas sensor using two-dimensional silicon carbide grating based on surface plasmon resonance. Opt Quantum Electron 55:5. https://doi.org/10.1007/s11082-023-04682-3

  32. Zhu D et al (2023) Research on Surface Plasmon Resonance Sensing of Metal Nano hollow Elliptic Cylinder. Plasmonics. https://doi.org/10.1007/s11468-023-01930-w

    Article  Google Scholar 

  33. Beiranvand B, Khabibullin RA, Sobolev AS (2023) Local field enhancement due to the edge states of nanoplasmonic crystal. Photonics 10:3. https://doi.org/10.3390/photonics10030263

  34. Warhurst A (2002) Sustainability indicators and sustainability performance management. Mining, Minerals and Sustainable Development 43:1–129

    Google Scholar 

  35. Lin X et al (2018) Integrative solar absorbers for highly efficient solar steam generation. J Mater Chem A 6(11):4642–4648. https://doi.org/10.1039/c7ta08256h

    Article  CAS  Google Scholar 

  36. Liu B et al (2021) Optical properties and thermal stability evaluation of solar absorbers enhanced by nanostructured selective coating films. Powder Technol 377:939–957. https://doi.org/10.1016/j.powtec.2020.09.040

    Article  CAS  Google Scholar 

  37. Razak AA et al (2016) Review on matrix thermal absorber designs for solar air collector. Renew Sustain Energy Rev 64:682–693. https://doi.org/10.1016/j.rser.2016.06.015

    Article  Google Scholar 

  38. Liu Z, Liu G, Huang Z, Liu X, Fu G (2018) Ultra-broadband perfect solar absorber by an ultra-thin refractory titanium nitride meta-surface. Sol Energy Mater Sol Cells 179:346–352. https://doi.org/10.1016/j.solmat.2017.12.033

    Article  CAS  Google Scholar 

  39. Liu Z, Liu G, Liu X, Wang Y, Fu G (2018) Titanium resonators based ultra-broadband perfect light absorber. Opt Mater (Amst) 83:118–123. https://doi.org/10.1016/j.optmat.2018.06.008

    Article  CAS  Google Scholar 

  40. Gao H et al (2018) Refractory ultra-broadband perfect absorber from visible to near-infrared. Nanomaterials 8:12. https://doi.org/10.3390/NANO8121038

  41. Soydan MC, Ghobadi A, Yildirim DU, Erturk VB, Ozbay E (2019) All ceramic-based metal-free ultra-broadband perfect absorber. Plasmonics 14(6):1801–1815. https://doi.org/10.1007/s11468-019-00976-z

    Article  CAS  Google Scholar 

  42. Tian X, Li Z-Y (2016) Visible-near infrared ultra-broadband polarization-independent metamaterial perfect absorber involving phase-change materials. Photonics Res 4(4):146. https://doi.org/10.1364/prj.4.000146

    Article  CAS  Google Scholar 

  43. Yu P et al (2019) A numerical research of wideband solar absorber based on refractory metal from visible to near infrared. Opt Mater (Amst). https://doi.org/10.1016/j.optmat.2019.109400

    Article  Google Scholar 

  44. Patel SK, Charola S, Jadeja R, Nguyen TK, Dhasarathan V (2021) Wideband graphene-based near-infrared solar absorber using C-shaped rectangular sawtooth metasurface. Phys. E Low-Dimensional Syst. Nanostructures 126:114493. https://doi.org/10.1016/j.physe.2020.114493

  45. Patel SK, Surve J, Jadeja R, Katkar V, Parmar J, Ahmed K (2022) Ultra‐wideband, polarization‐independent, wide‐angle multilayer swastika‐shaped metamaterial solar energy absorber with absorption prediction using machine learning. Adv Theory Simulations 2100604. https://doi.org/10.1002/adts.202100604

Download references

Acknowledgements

The authors received funding from the Deanship of Scientific Research at Najran University for under the Research Priorities and Najran Research funding program: grant code NU/NRP/SERC/12/44.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, AHMA and SKP; methodology, AHMA, SKP; software, AHMA and BBH; validation, AA, SKP, BAA, and SAT; writing—original draft preparation, all authors; writing—review and editing, all Authors; all authors have read and agreed to the published version of the manuscript.

Corresponding authors

Correspondence to Abdulkarem H. M. Almawgani or Shobhit K. Patel.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almawgani, A.H.M., Han, B.B., Patel, S.K. et al. Design of Surface Plasmon Resonance–Based Solar Absorber Using Bloom-Shaped Au-InSb-Al Structure. Plasmonics 19, 631–641 (2024). https://doi.org/10.1007/s11468-023-02003-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02003-8

Keywords

Navigation