Skip to main content
Log in

Design of Split Ring Resonator Graphene Metasurface Sensor for Efficient Detection of Brain Tumor

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Tumors, irregularities, and malignancies of the brain are deemed lethal. If brain cancer detection techniques are executed appropriately, precious lives might be saved. They should have exceptional mobility, precision, response speed, and high sensitivity. By enabling earlier detection and treatment, a brain tumor sensor has the potential to greatly improve the prognosis for patients with brain tumors. Early detection of brain cancers by the sensor enables early treatment and better patient outcomes. This study demonstrates what is regarded to be a step towards reaching these goals. The proposed is a unique biomedical graphene metasurface sensor (GMS) that can reliably detect and differentiate between various brain tissues. For the proposed study, we have included the abnormal brain tissues of several injuries, tumors, and malignant cells. The proposed GMS reports the highest sensitivity of 153.85 GHz/RIU with a figure of merit of 3.98 and a quality factor of 8.54, where the operating frequency is 0.25 to 0.45 THz. The proposed GMS also indicates the linear functionality for resonance frequency and respective specific brain tissue refractive indices. Overall, these performance indicator parameters indicate good performance, and we can therefore state that the developed GMS structure is highly effective and can be applied for the low-cost, timely, and efficient detection of brain tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Availability of Data and Materials

The data supporting the findings in this work are available from the corresponding author with a reasonable request.

References

  1. Ferreira MFS et al (2017) Roadmap on optical sensors. J Opt (United Kingdom) 19(8). https://doi.org/10.1088/2040-8986/aa7419

  2. Surve J, Patel SK, Parmar J (2022) Design of cost-efficient graphene metasurface based pregnancy test with NOR gate realization and parametric optimization. IEEE Sens J 1–1. https://doi.org/10.1109/JSEN.2022.3218797

  3. Daher MG et al (2022) Detection of basal cancer cells using photodetector based on a novel surface plasmon resonance nanostructure employing perovskite layer with an ultra high sensitivity. Plasmonics. https://doi.org/10.1007/s11468-022-01727-3

    Article  Google Scholar 

  4. Aliqab K, Wekalao J, Alsharari M, Armghan A, Agravat D, Patel SK (2023) Designing a graphene metasurface organic material sensor for detection of organic compounds in wastewater. Biosensors 13(8):759. https://doi.org/10.3390/bios13080759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Almawgani AHM et al (2023) A graphene-metasurface-inspired optical sensor for the heavy metals detection for efficient and rapid water treatment. Photonics 10(1):56. https://doi.org/10.3390/photonics10010056

    Article  CAS  Google Scholar 

  6. Du H, Li Z, Wang Y, Yang Q, Wu W (2020) Nanomaterial-based optical biosensors for the detection of foodborne bacteria. Food Reviews International. Taylor and Francis Inc. https://doi.org/10.1080/87559129.2020.1740733

  7. Xu W, Xie L, Ying Y (2017) Mechanisms and applications of terahertz metamaterial sensing: a review. Nanoscale 9(37):13864–13878. https://doi.org/10.1039/c7nr03824k

    Article  CAS  PubMed  Google Scholar 

  8. Hu H et al (2016) Far-field nanoscale infrared spectroscopy of vibrational fingerprints of molecules with graphene plasmons. Nat Commun 7. https://doi.org/10.1038/ncomms12334

  9. Abraham E, Younus A, Delagnes JC, Mounaix P (2010) Non-invasive investigation of art paintings by terahertz imaging. Appl Phys A Mater Sci Process 100(3):585–590. https://doi.org/10.1007/s00339-010-5642-z

    Article  ADS  CAS  Google Scholar 

  10. Yu C, Fan S, Sun Y, Pickwell-Macpherson E (2012) The potential of terahertz imaging for cancer diagnosis: a review of investigations to date. Quant Imaging Med Surg 2(1):33–45. https://doi.org/10.3978/j.issn.2223-4292.2012.01.04

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yang J et al (2021) A terahertz metamaterial sensor used for distinguishing glucose concentration. Results Phys 26. https://doi.org/10.1016/j.rinp.2021.104332

  12. Zhao HZ, Zhou YJ, Cai J, Li QY, Li Z, Xiao ZY (2020) Ultra-high resolution sensing of glucose concentration based on amplified half-integer localized surface plasmons mode. J Phys D Appl Phys 53(9). https://doi.org/10.1088/1361-6463/ab5b4f

  13. Vafapour Z (2019) Polarization-independent perfect optical metamaterial absorber as a glucose sensor in food industry applications. IEEE Trans Nanobioscience 18(4):622–627. https://doi.org/10.1109/TNB.2019.2929802

    Article  PubMed  Google Scholar 

  14. Cherkasova O, Nazarov M, Shkurinov A (2016) Noninvasive blood glucose monitoring in the terahertz frequency range. Opt Quantum Electron 48(3). https://doi.org/10.1007/s11082-016-0490-5

  15. Otsuji T (2015) Trends in the research of modern terahertz detectors: plasmon detectors. IEEE Trans Terahertz Sci Technol 5(6):1110–1120

    CAS  Google Scholar 

  16. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10(8):569–581. https://doi.org/10.1038/nmat3064

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wu X et al (2018) Boosting carrier mobility of synthetic few layer graphene on SiO2 by interlayer rotation and decoupling. Adv Mater Interfaces 5(14). https://doi.org/10.1002/admi.201800454

  18. Yu N, Capasso F (2014) Flat optics with designer metasurfaces. Nat Mater 13(2):139–150. https://doi.org/10.1038/nmat3839

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Patel SK, Surve J, Prajapati P, Taya SA (2022) Design of an ultra-wideband solar energy absorber with wide-angle and polarization independent characteristics. Opt Mater (Amst) 131:112683. https://doi.org/10.1016/j.optmat.2022.112683

  20. Patel SK, Surve J, Parmar J, Natesan A, Katkar V (2022) Graphene-based metasurface refractive index biosensor for hemoglobin detection: machine learning assisted optimization. IEEE Trans Nanobioscience 1–1. https://doi.org/10.1109/TNB.2022.3201237

  21. Ding P et al (2021) Graphene metasurface for broadband, wide-angle and polarization-insensitive carpet cloak. Opt Mater (Amst) 121. https://doi.org/10.1016/j.optmat.2021.111578

  22. Alexander K, Savostianova NA, Mikhailov SA, Van Thourhout D, Kuyken B (2018) Gate-tunable nonlinear refraction and absorption in graphene-covered silicon nitride waveguides. ACS Photonics 5(12):4944–4950. https://doi.org/10.1021/acsphotonics.8b01132

    Article  CAS  Google Scholar 

  23. Tiwari A, Srivastava S, Pant M (2020) Brain tumor segmentation and classification from magnetic resonance images: review of selected methods from 2014 to 2019. Pattern Recognit Lett 131:244–260. https://doi.org/10.1016/j.patrec.2019.11.020

    Article  ADS  Google Scholar 

  24. Nadeem MW et al (2020) Brain tumor analysis empowered with deep learning: a review, taxonomy, and future challenges. Brain Sciences 10(2). https://doi.org/10.3390/brainsci10020118

  25. Logeswari T, Karnan M (2010) An improved implementation of brain tumor detection using segmentation based on hierarchical self organizing map. Int J Comput Theory Eng 591–595. https://doi.org/10.7763/ijcte.2010.v2.207

  26. Schonberg DL, Lubelski D, Miller TE, Rich JN (2013) Brain tumor stem cells: molecular characteristics and their impact on therapy. Mol Aspects Med 39:82–101. https://doi.org/10.1016/j.mam.2013.06.004

    Article  CAS  PubMed  Google Scholar 

  27. Cheung AT et al (2019) Impact of brain tumor and its treatment on the physical and psychological well-being, and quality of life amongst pediatric brain tumor survivors. Eur J Oncol Nurs 41:104–109. https://doi.org/10.1016/j.ejon.2019.06.003

    Article  PubMed  Google Scholar 

  28. Law N et al (2011) Cerebello-thalamo-cerebral connections in pediatric brain tumor patients: impact on working memory. Neuroimage 56(4):2238–2248. https://doi.org/10.1016/j.neuroimage.2011.03.065

    Article  PubMed  Google Scholar 

  29. Chahal PK, Pandey S, Goel S (2020) A survey on brain tumor detection techniques for MR images. Multimed Tools Appl 79(29–30):21771–21814. https://doi.org/10.1007/s11042-020-08898-3

    Article  Google Scholar 

  30. Abdullah AA, Chize BS, Nishio Y (2012) Implementation of an improved cellular neural network algorithm for brain tumor detection. In: 2012 International Conference on Biomedical Engineering, ICoBE 2012. pp 611–615. https://doi.org/10.1109/ICoBE.2012.6178990

  31. Rupp F, Jedamzik R, Bartelmess L, Petzold U (2021) The modern way of refractive index measurement of optical glass at SCHOTT. p 8. https://doi.org/10.1117/12.2597023

  32. Raeen MS, Nella A (2023) A plasmonic metamaterial flexible absorber design and analysis in optical regime. Opt Quantum Electron 55(8). https://doi.org/10.1007/s11082-023-04968-6

  33. Raeen MS, Nella A, Maheswar R (2023) A fourfold star petal–shaped polarization-insensitive broadband plasmonic metamaterial absorber. Plasmonics 18(3):1059–1074. https://doi.org/10.1007/s11468-023-01815-y

    Article  CAS  Google Scholar 

  34. Patel SK et al (2023) Graphene-based H-shaped biosensor with high sensitivity and optimization using ML-based algorithm. Alexandria Eng J 68:15–28. https://doi.org/10.1016/j.aej.2023.01.002

    Article  Google Scholar 

  35. Salski B (2014) An FDTD model of graphene intraband conductivity. IEEE Trans Microw Theory Tech 62(8):1570–1578. https://doi.org/10.1109/TMTT.2014.2331620

    Article  ADS  Google Scholar 

  36. Yan H et al (2011) Infrared spectroscopy of wafer-scale graphene. ACS Nano 5(12):9854–9860. https://doi.org/10.1021/nn203506n

    Article  CAS  PubMed  Google Scholar 

  37. Jadeja R, Surve J, Parmar T, Patel SK, Al-Zahrani FA (2023) Detection of peptides employing a THz metasurface based sensor. Diam Relat Mater 109675. https://doi.org/10.1016/j.diamond.2022.109675

  38. Patel SK et al (2022) Terahertz metasurface-based refractive index sensor for amino acid detection: a numerical approach. IEEE Trans Nanobioscience 1–1. https://doi.org/10.1109/TNB.2022.3222446

  39. Liu PY et al (2016) Cell refractive index for cell biology and disease diagnosis: past, present and future. Lab Chip 16(4):634–644. https://doi.org/10.1039/c5lc01445j

    Article  ADS  CAS  PubMed  Google Scholar 

  40. Biwas TK, Gupta AK (2002) Retrieval of true color of the internal organ of CT images and attempt to tissue characterization by refractive index: initial experience. Indian J Radiol Imaging 12(2):169–178

    Google Scholar 

  41. COMSOL Multiphysics® v. 6.0

  42. Mason JC, Handscomb DC (2002) Chebyshev polynomials

  43. Ramanujam NR et al (2019) Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal. Microsyst Technol 25(1):189–196. https://doi.org/10.1007/s00542-018-3947-6

    Article  Google Scholar 

  44. White IM, Fan X (2008) On the performance quantification of resonant refractive index sensors. Opt Express 16(2):1020. https://doi.org/10.1364/OE.16.001020

    Article  ADS  PubMed  Google Scholar 

Download references

Acknowledgements

Researchers Supporting Project number (RSPD2023R654), King Saud University, Riyadh, Saudi Arabia.

Funding

Researchers Supporting Project number (RSPD2023R654), King Saud University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Osamah Alsalman, Shobhit K. Patel; methodology: Osamah Alsalman, Shobhit K. Patel, and Jacobe Wekaleo; software: Jacob Wekalao, and Shobhit K. Patel; validation, Dhruvik Agravat, U. Arun Kumar, and Juveriya Parmar; writing—original draft preparation: all authors; writing—review and editing: all authors; all authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Shobhit K. Patel.

Ethics declarations

Ethical Approval

Not applicable.

Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alsalman, O., Wekalao, J., Arun Kumar, U. et al. Design of Split Ring Resonator Graphene Metasurface Sensor for Efficient Detection of Brain Tumor. Plasmonics 19, 523–532 (2024). https://doi.org/10.1007/s11468-023-02002-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-02002-9

Keywords

Navigation