Skip to main content
Log in

AI Algorithm for Mode Classification of PCF-SPR Sensor Design

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Photonic crystal fiber design based on surface plasmon resonance phenomenon (PCF-SPR) is optimized before it is fabricated for a particular application. An artificial intelligence algorithm is evaluated here to increase the ease of the simulation process for common users. COMSOL™ MultiPhysics is used. The algorithm suggests best among eight standard machine learning and one deep learning model to automatically select the desired mode, chosen visually by the experts otherwise. A total seven performance indices: namely, precision, recall, accuracy, F1-score, specificity, and Matthew correlation coefficient, are utilized to make the optimal decision. Robustness toward variations in sensor geometry design is also considered an optimal parameter. Several PCF-SPR-based photonic sensor designs are tested, and a large range optimal (based on phase matching) design is proposed. For this design algorithm has selected support vector machine (SVM) as the best option with an accuracy of 96%, F1-score is 95.83%, and MCC of 92.30%. The average sensitivity of the proposed sensor design with respect to change in refractive index (1.37–1.41) is 5500 nm/RIU. Resolution is 2.0498 \(\times {10}^{-5}\) \({\mathrm{RIU}}^{-1}\). The algorithm can be integrated into commercial software as an add-on or as a module in academic codes. The proposed novel step has saved approximately 75 min in the overall design process. The present work is equally applicable for mode selection of sensor other than PCF-SPR sensing geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

Data will be provided on request.

References

  1. Li L, Huang T, Zhao X, Wu X, Cheng Z (2018) Highly sensitive SPR sensor based on hybrid coupling between plasmon and photonic mode. IEEE Photonics Technol Lett 30(15):1364–1367

    Article  ADS  CAS  Google Scholar 

  2. Jabin M, Ahmed K, Rana M, Paul BK, Islam M, DV et al (2019) Surface plasmon resonance based titanium coated biosensor for cancer cell detection. IEEE Photonics J 1

  3. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications. Opt Fiber Technol 48:159–164

    Article  ADS  CAS  Google Scholar 

  4. Singh Y, Paswan MK, Raghuwanshi SK (2021) Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing. Plasmonics 1–10

  5. Homola J (2008) Surface plasmon resonance sensors for detection of chemical and biological species. Chem Rev 108(2):462–493

    Article  CAS  PubMed  Google Scholar 

  6. Nooke A, Beck U, Hertwig A, Krause A, Krüger H, Lohse V et al (2010) On the application of gold based SPR sensors for the detection of hazardous gases. Sens Actuators B Chem 149(1):194–198

    Article  CAS  Google Scholar 

  7. Li L, Liang Y, Guang J, Cui W, Zhang X, Masson JF et al (2017) Dual Kretschmann and Otto configuration fiber surface plasmon resonance biosensor. Opt Express 25(22):26950–26957

    Article  ADS  PubMed  Google Scholar 

  8. Rifat AA, Hasan MR, Ahmed R, Butt H (2017) Photonic crystal fiber-based plasmonic biosensor with external sensing approach. J Nanophotonics 12(1):12503

    Article  Google Scholar 

  9. Liedberg B, Nylander C, Lunström I (1983) Surface plasmon resonance for gas detection and biosensing. Sensors and Actuators 4:299–304

    Article  CAS  Google Scholar 

  10. Zhang S, Zhang P, Dong Z, Xu D, Wang D, Li J (2023) Highly efficient D-type photonic crystal fiber surface plasmon resonance sensor for same space–time temperature and refractive index detection. Plasmonics [Internet]. [cited 2023 Aug 6] 18(1):373–84. Available from: https://link.springer.com/article/10.1007/s11468-022-01774-w

  11. Wang D, Zhang S, Li Y, Li J (2022) Highly efficient asymmetric dual refractive index D-type photonic crystal fiber surface plasmon resonance sensor. Plasmonics [Internet]. [cited 2023 Aug 6];17(5):2063–74. Available from: https://link.springer.com/article/10.1007/s11468-022-01694-9

  12. Haque E, Hossain MdA, Ahmed F, Namihira Y (2018) Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 1

  13. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  PubMed  Google Scholar 

  14. McPeak KM, Jayanti SV, Kress SJP, Meyer S, Iotti S, Rossinelli A et al (2015) Plasmonic films can easily be better: rules and recipes. ACS Photonics 2(3):326–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photonics Technol Lett 26(11):1092–1095

    Article  ADS  CAS  Google Scholar 

  16. Zynio SA, Samoylov AV, Surovtseva ER, Mirsky VM, Shirshov YM (2002) Bimetallic layers increase sensitivity of affinity sensors based on surface plasmon resonance. Sensors 2(2):62–70

    Article  ADS  CAS  Google Scholar 

  17. El-Saeed AH, Khalil AE, Hameed MFO, Azab MY, Obayya SSA (2019) Highly sensitive SPR PCF biosensors based on Ag/TiN and Ag/ZrN configurations. Opt Quantum Electron 51(2):56

    Article  Google Scholar 

  18. Farmer DB, Avouris P, Li Y, Heinz TF, Han SJ (2016) Ultrasensitive plasmonic detection of molecules with graphene. ACS Photonics 3(4):553–557

    Article  CAS  Google Scholar 

  19. Kravets VG, Jalil R, Kim YJ, Ansell D, Aznakayeva DE, Thackray B et al (2014) Graphene-protected copper and silver plasmonics. Sci Rep 4(1):1–8

    Article  Google Scholar 

  20. West PR, Ishii S, Naik GV, Emani NK, Shalaev VM, Boltasseva A (2010) Searching for better plasmonic materials. Laser Photon Rev 4(6):795–808

    Article  ADS  CAS  Google Scholar 

  21. Hassani A, Skorobogatiy M (2006) Design of the microstructured optical fiber-based surface plasmon resonance sensors with enhanced microfluidics. Opt Express 14(24):11616–11621

    Article  ADS  CAS  PubMed  Google Scholar 

  22. Fan Z, Li S, Liu Q, An G, Chen H, Li J et al (2015) High sensitivity of refractive index sensor based on analyte-filled photonic crystal fiber with surface plasmon resonance. IEEE Photonics J 7(3):1–9

    Article  Google Scholar 

  23. Shuai B, Xia L, Liu D (2012) Coexistence of positive and negative refractive index sensitivity in the liquid-core photonic crystal fiber based plasmonic sensor. Opt Express 20(23):25858–25866

    Article  ADS  PubMed  Google Scholar 

  24. Rifat AA, Mahdiraji GA, Chow DM, Shee YG, Ahmed R, Adikan FRM (2015) Photonic crystal fiber-based surface plasmon resonance sensor with selective analyte channels and graphene-silver deposited core. Sensors 15(5):11499–11510

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  25. Fu X, Lu Y, Huang X, Yao JQ (2011) Surface plasmon resonance sensor based on photonic crystal fiber filled with silver nanowires. Opt Appl 41(4):941–951

    CAS  Google Scholar 

  26. Lu Y, Yang X, Wang M, Yao J (2015) Surface plasmon resonance sensor based on hollow-core PCFs filled with silver nanowires. Electron Lett 51(21):1675–1677

    Article  ADS  Google Scholar 

  27. Lu Y, Wang MT, Hao CJ, Zhao ZQ, Yao JQ (2014) Temperature sensing using photonic crystal fiber filled with silver nanowires and liquid. IEEE Photonics J 6(3):1–7

    Google Scholar 

  28. Islam MdS, Sultana J, Rifat Ahmmed A, Ahmed R, Dinovitser A, Ng BWH et al (2018) Dual-polarized highly sensitive plasmonic sensor in the visible to near-IR spectrum. Opt Express 26(23):30347–61

    Article  ADS  CAS  PubMed  Google Scholar 

  29. Wang F, Liu C, Sun Z, Sun T, Liu B, Chu PK (2018) A highly sensitive SPR sensors based on two parallel PCFs for low refractive index detection. IEEE Photonics J 10(4):1–10

    Article  Google Scholar 

  30. Noman A AI, Haque E, Hossain M, Hai NH, Namihira Y, Ahmed F (2020) Sensitivity enhancement of modified D-shaped microchannel PCF-based surface plasmon resonance sensor. Sensors 20(21):6049

    Article  ADS  Google Scholar 

  31. Biplob Hossain Md, Riazul Islam SM, Tasrif Hossain KM, Faisal Abdulrazak L, Nazmus Sakib Md, Amiri IS (2020) High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach. Results Phys 16:102909

    Article  Google Scholar 

  32. Fang H, Wei C, Wang D, Yuan L, Jiao S, Bao Z et al (2020) Research on photonic crystal fiber based on a surface plasmon resonance sensor with segmented silver-titanium dioxide film. Journal of the Optical Society of America B 37(3):736–744

    Article  ADS  CAS  Google Scholar 

  33. Rifat AA, Ahmed R, Yetisen AK, Butt H, Sabouri A, Mahdiraji GA et al (2017) Photonic crystal fiber based plasmonic sensors. Sens Actuators B Chem 243:311–325

    Article  CAS  Google Scholar 

  34. Tian M, Lu P, Chen L, Lv C, Liu D (2012) All-solid D-shaped photonic fiber sensor based on surface plasmon resonance. Opt Commun 285(6):1550–1554

    Article  ADS  CAS  Google Scholar 

  35. Rifat AA, Mahdiraji GA, Sua YM, Shee YG, Ahmed R, Chow DM et al (2015) Surface plasmon resonance photonic crystal fiber biosensor: a practical sensing approach. IEEE Photonics Technol Lett 27(15):1628–1631

    Article  ADS  CAS  Google Scholar 

  36. Yasli A, Akowuah EK, Haxha S, Ademgil H (2016) Photonic crystal fiber based surface plasmon sensor design and analyze with elliptical air holes. In: 2016 HONET-ICT 75–8

  37. Lu J, Li Y, Han Y, Liu Y, Gao J (2018) D-shaped photonic crystal fiber plasmonic refractive index sensor based on gold grating. Appl Opt 57(19):5268–5272

    Article  ADS  CAS  PubMed  Google Scholar 

  38. Luan N, Wang R, Lv W, Yao J (2015) Surface plasmon resonance sensor based on D-shaped microstructured optical fiber with hollow core. Opt Express 23(7):8576–8582

    Article  ADS  CAS  PubMed  Google Scholar 

  39. Haque E, Hossain MdA, Ahmed F, Namihira Y (2018) Surface plasmon resonance sensor based on modified D-shaped photonic crystal fiber for wider range of refractive index detection. IEEE Sens J 1

  40. Zelaci A, Yasli A, Kalyoncu C, Ademgil H (2021) Generative adversarial neural networks model of photonic crystal fiber based surface plasmon resonance sensor. J Lightwave Technol 39(5):1515–1522

    Article  ADS  CAS  Google Scholar 

  41. Chugh S, Gulistan A, Ghosh S, Rahman BMA (2019) Machine learning approach for computing optical properties of a photonic crystal fiber. Opt Express 27(25):36414–36425

    Article  ADS  CAS  PubMed  Google Scholar 

  42. da Ferreira A S, Malheiros-Silveira GN, Hernández-Figueroa HE (2018) Computing optical properties of photonic crystals by using multilayer perceptron and extreme learning machine. J Light Technol 36(18):4066–73

    Article  Google Scholar 

  43. Kiarashinejad Y, Zandehshahvar M, Abdollahramezani S, Hemmatyar O, Pourabolghasem R, Adibi A (2020) Knowledge discovery in nanophotonics using geometric deep learning. Advanced Intelligent Systems 2(2):1900132

    Article  Google Scholar 

  44. Asano T, Noda S (2018) Optimization of photonic crystal nanocavities based on deep learning. Opt Express 26(25):32704–32717

    Article  ADS  CAS  PubMed  Google Scholar 

  45. McAtee PD, Bukkapatnam STS, Lakhtakia A (2019) Artificial neural network to estimate the refractive index of a liquid infiltrating a chiral sculptured thin film. J Nanophotonics 13(4):46006

    Article  CAS  Google Scholar 

  46. YouTube [Internet]. [cited 2021 Jul 9]. Available from: https://www.youtube.com/watch?v=tidL5PJ73CQ

  47. Roli F, Fumera G (2001) Support vector machines for remote sensing image classification. In: Image and signal processing for remote sensing VI. International Society for Optics and Photonics 160–6

  48. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    Article  Google Scholar 

  49. Wang H, Zheng B, Yoon SW, Ko HS (2018) A support vector machine-based ensemble algorithm for breast cancer diagnosis. Eur J Oper Res 267(2):687–699

    Article  MathSciNet  Google Scholar 

  50. Quinlan JR (1996) Learning decision tree classifiers. ACM Computing Surveys (CSUR) 28(1):71–72

    Article  Google Scholar 

  51. Rodriguez-Galiano VF, Ghimire B, Rogan J, Chica-Olmo M, Rigol-Sanchez JP (2012) An assessment of the effectiveness of a random forest classifier for land-cover classification. ISPRS J Photogramm Remote Sens 67:93–104

    Article  ADS  Google Scholar 

  52. Breiman L (1996) Bagging predictors. Mach Learn 24(2):123–140

    Article  Google Scholar 

  53. Freund Y, Schapire RE (1997) A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci 55(1):119–139

    Article  MathSciNet  Google Scholar 

  54. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  Google Scholar 

  55. Schapire RE (1990) The strength of weak learnability. Mach Learn 5(2):197–227

    Article  Google Scholar 

  56. Friedman JH (2001) Greedy function approximation: a gradient boosting machine. Ann Stat 1189–232

  57. Drucker H, Schapire R, Simard P (1993) Boosting performance in neural networks. In: Advances in pattern recognition systems using neural network technologies. World Sci 61–75

  58. Wolpert DH (1992) Stacked generalization. Neural Netw 5(2):241–259

    Article  Google Scholar 

  59. Flach PA, Lachiche N (2004) Naive Bayesian classification of structured data. Mach Learn 57(3):233–269

    Article  Google Scholar 

  60. Domingos P, Pazzani M (1997) On the optimality of the simple Bayesian classifier under zero-one loss. Mach Learn 29(2):103–130

    Article  Google Scholar 

  61. Lei X, Pan H, Huang X (2019) A dilated CNN model for image classification. IEEE Access 7:124087–124095

    Article  Google Scholar 

  62. Sharif V, Pakarzadeh H (2023) High-performance surface plasmon resonance fiber sensor based on cylindrical vector modes. Scientific Reports 2023 13:1 [Internet]. [cited 2023 Aug 6] 13(1):1–9. Available from: https://www.nature.com/articles/s41598-023-31524-9

  63. Ramola A, Marwaha A, Singh S (2021) Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl Phys A Mater Sci Process [Internet]. [cited 2023 Aug 6] 127(9):1–20. Available from: https://link.springer.com/article/10.1007/s00339-021-04785-2

  64. Rahman MM, Rana MM, Anower MS, Rahman MS, Paul AK (2020) Design and analysis of photonic crystal fiber-based plasmonic microbiosensor: an external sensing scheme. SN Appl Sci [Internet]. [cited 2023 Aug 6] 2(7):1–11. Available from: https://link.springer.com/article/10.1007/s42452-020-2998-3

  65. Khalek MdA, Chakma S, Paul BK, Ahmed K (2018) Dataset of surface plasmon resonance based on photonic crystal fiber for chemical sensing applications. Data Brief 19:76–81

  66. Yap BW, Abd Rani K, Abd Rahman HA, Fong S, Khairudin Z, Abdullah NN (2014) An application of oversampling, undersampling, bagging and boosting in handling imbalanced datasets. Proceedings of the first international conference on advanced data and information engineering (DaEng-2013). Springer p. 13–22

  67. Run COMSOL Multiphysics® Simulations with MATLAB® [Internet]. [cited 2023 Aug 4]. Available from: https://www.comsol.com/livelink-for-matlab#cta-section

  68. How to Integrate External Data Files with Your COMSOL® App | COMSOL Blog [Internet]. [cited 2023 Aug 4]. Available from: https://www.comsol.com/blogs/how-to-integrate-external-data-files-with-your-comsol-app/

  69. Sakib MdN, Hossain MbB, Al-tabatabaie KF, Mehedi IM, Hasan MdT, Hossain MdA et al (2019) High performance dual core D-shape PCF-SPR sensor modeling employing gold coat. Results Phys 15:102788

  70. Biplob Hossain Md, Riazul Islam SM, Tasrif Hossain KM, Faisal Abdulrazak L, Nazmus Sakib Md, Amiri IS (2020) High sensitivity hollow core circular shaped PCF surface plasmonic biosensor employing silver coat: a numerical design and analysis with external sensing approach. Results Phys 16:102909

  71. Hu DJJ, Ho HP (2017) Recent advances in plasmonic photonic crystal fibers: design, fabrication and applications. Adv Opt Photonics 9(2):257–314

    Article  ADS  Google Scholar 

  72. Weng S, Pei L, Wang J, Ning T, Li J (2017) High sensitivity D-shaped hole fiber temperature sensor based on surface plasmon resonance with liquid filling. Photonics Res 5(2):103–107

    Article  CAS  Google Scholar 

  73. Tan Z, Hao X, Shao Y, Chen Y, Li X, Fan P (2014) Phase modulation and structural effects in a D-shaped all-solid photonic crystal fiber surface plasmon resonance sensor. Opt Express 22(12):15049–15063

    Article  ADS  PubMed  Google Scholar 

  74. Chopra H, Kaler RS, Painam B (2016) Photonic crystal waveguide-based biosensor for detection of diseases. J Nanophotonics 10(3):36011

    Article  Google Scholar 

  75. Hutson M (2018) Artificial intelligence faces reproducibility crisis. Science (1979) [Internet]. 359(6377):725–6. Available from: https://science.sciencemag.org/content/359/6377/725

  76. Raff E (2019) A Step Toward quantifying independently reproducible machine learning research. [cited 2021 Jul 8]; Available from: http://arxiv.org/abs/1909.06674

Download references

Acknowledgements

We would like to acknowledge Prof. Sachin K. Srivastava for inspiring Ms. Prasunika to initiate work in this direction via his coursework.

Funding

This work is partially supported by GRANT Code I.M.P./2018/001045 by IMPRINT-II by S.E.R.B., Government of India.

Author information

Authors and Affiliations

Authors

Contributions

Mayank Goswami: conceptualization, methodology, investigation, writing, visualization, supervision, and funding acquisition. Prasunika Khare: software and methodology, Snehlata Shakya: software verification, and re-investigation.

Corresponding author

Correspondence to Mayank Goswami.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 43 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goswami, M., Khare, P. & Shakya, S. AI Algorithm for Mode Classification of PCF-SPR Sensor Design. Plasmonics 19, 363–377 (2024). https://doi.org/10.1007/s11468-023-01997-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01997-5

Keywords

Navigation