Skip to main content

Advertisement

Log in

Protein Conjugated Superparamagnetic Iron Oxide Nanoparticles for Efficient Vaccine Delivery Systems

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

A novel class of nanomaterials as subunit nano vaccines has shown great potential for delivering antigens to the target in a safe and effective manner. Herein, functionalized superparamagnetic iron oxide nanoparticle (SPION) surfaces with conjugated a malaria protein (vaccine) and carboxyl groups have a comparatively high capacity to bind protein. SPIONs were synthesized using the chemical coprecipitation process, then coated with either 3-aminopropyltriethoxysilane or with PEG plus APTS and characterized using DSL-zeta potential, VSM, TG and SEM. Furthermore, SDS-PAGE was used to measure the amount of protein specifically attached to particles. The idea behind this project is that by gradually and continuously releasing the antigen, it could trigger and sustain a strong immune response over an extended period. The results showed that functionalized SPIONs conjugated to the PyMSP119 antigen might be exploited for the antigen’s controlled release and could be applied to various types of antigens in the future. The current study results demonstrated the effectiveness of SPIONS-based antigen vaccination systems for eliciting antibody responses that may be suitable for a variety of illnesses not just malaria.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Albukhaty S, Al-Musawi S, Abdul Mahdi S, Sulaiman GM, Alwahibi MS, Dewir YH, Soliman DA, Rizwana H (2020) Investigation of dextran-coated superparamagnetic nanoparticles for targeted vinblastine controlled release, delivery, apoptosis induction, and gene expression in pancreatic cancer cells. Molecules 25:4721. https://doi.org/10.3390/molecules25204721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Albukhaty S, Naderi-Manesh H, Tiraihi T, Sakhi Jabir M (2018) Poly-l-lysine-coated superparamagnetic nanoparticles: a novel method for the transfection of pro-BDNF into neural stem cells. Artif Cells Nanomed Biotechnol 46:S125–S132

    Article  CAS  PubMed  Google Scholar 

  3. Jose J, Kumar R, Harilal S, Mathew GE, Parambi DGT, Prabhu A, Uddin S, Aleya L, Kim H, Mathew B (2020) Magnetic nanoparticles for hyperthermia in cancer treatment: an emerging tool. Environ Sci Pollut Res 27:19214–19225

    Article  Google Scholar 

  4. Giouroudi I, Keplinger F (2013) Microfluidic biosensing systems using magnetic nanoparticles. Int J Mol Sci 14:18535–18556. https://doi.org/10.3390/ijms140918535

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Avasthi A, Caro C, Pozo-Torres E, Leal MP, Garcia-Martin ML (2020) Magnetic Nanoparticles as MRI contrast agents. Top Curr Chem 378:40

    Article  CAS  Google Scholar 

  6. Perea H, Aigner J, Heverhagen JT, Hopfner U, Wintermantel E (2007) Vascular tissue engineering with magnetic nanoparticles: seeing deeper. J Tissue Eng Regen Med 1:318–321

    Article  CAS  PubMed  Google Scholar 

  7. Akhtar N, Mohammed HA, Yusuf M, Al-Subaiyel A, Sulaiman GM, Khan RA (2022) SPIONs conjugate supported anticancer drug doxorubicin’s delivery: current status, challenges, and prospects. Nanomaterials 12:3686. https://doi.org/10.3390/nano12203686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ma J, Bruce TJ, Jones EM, Cain KD (2019) A review of fish vaccine development strategies: conventional methods and modern biotechnological approaches. Microorganisms 7:569. https://doi.org/10.3390/microorganisms7110569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhou J, Kroll AV, Holay M, Fang RH, Zhang L (2020) Biomimetic nanotechnology toward personalized vaccines. Adv Mater 32:1901255

    Article  CAS  Google Scholar 

  10. Bezbaruah R, Chavda VP, Nongrang L, Alom S, Deka K, Kalita T, Ali F, Bhattacharjee B, Vora L (1946) Nanoparticle-based delivery systems for vaccines Vaccines 2022:10. https://doi.org/10.3390/vaccines10111946

    Article  CAS  Google Scholar 

  11. Kianfar E (2021) Protein nanoparticles in drug delivery: animal protein, plant proteins and protein cages, albumin nanoparticles. J Nanobiotechnol 19:159

    Article  CAS  Google Scholar 

  12. Albukhaty S, Naderi-Manesh H, Tiraihi T (2013) In vitro labeling of neural stem cells with poly-L-lysine coated super paramagnetic nanoparticles for green fluorescent protein transfection. Iran Biomed J 17:71–76

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Hameed MK, Ahmady IM, Han C, Mohamed AA (2020) Efficient synthesis of amino acids capped gold nanoparticles from easily reducible aryldiazonium tetrachloroaurate(III) salts for cellular uptake study. Amino Acids 52:941–953

    Article  CAS  PubMed  Google Scholar 

  14. Rana S, Sharma A, Kumar A, Kanwar SS, Singh M (2020) Utility of silane-modified magnesium-based magnetic nanoparticles for efficient immobilization of Bacillus thermoamylovorans lipase. Appl Biochem Biotechnol 192:1029–1043

    Article  CAS  PubMed  Google Scholar 

  15. Sun Z, Zhou X, Luo W, Yue Q, Zhang Y, Cheng X, Li W, Kong B, Deng Y, Zhao D (2016) Interfacial engineering of magnetic particles with porous shells: towards magnetic core—Porous shell microparticles. Nano Today 11:464–482

    Article  CAS  Google Scholar 

  16. Al-Abboodi A, Alsaady HAM, Banoon SR, Al-Saady M (2021) Conjugation strategies on functionalized iron oxide nanoparticles as a malaria vaccine delivery system. Bionatura. https://doi.org/10.21931/RB/2021.06.03.20

  17. Arnfinnsdottir NB, Chapman CA, Bailey RC, Aksnes A, Stokke BT (2020) Impact of silanization parameters and antibody immobilization strategy on binding capacity of photonic ring resonators. Sensors 20:3163. https://doi.org/10.3390/s20113163

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  18. Dyal A, Loos K, Noto M, Chang SW, Spagnoli C, Shafi KV, Ulman A, Cowman M, Gross RA (2003) Activity of Candida rugosa lipase immobilized on gamma-Fe2O3 magnetic nanoparticles. J Am Chem Soc 125(7):1684–1685

  19. Li Q, Zhan Z, Jin S, Tan B (2017) Wettable magnetic hyper crosslinked microporous nanoparticle as an efficient adsorbent for water treatment. Chem Eng J 326:109–116

    Article  CAS  Google Scholar 

  20. Martens U, Janke U, Möller S, Talbot D, Abou-Hassan A, Delcea M (2020) Interaction of fibrinogen-magnetic nanoparticle bioconjugates with integrin reconstituted into artificial membranes. Nanoscale 12:19918–19930

    Article  CAS  PubMed  Google Scholar 

  21. Vinzant N, Scholl JL, Wu CM, Kindle T, Koodali R, Forster GL (2017) Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci 11:608

    Article  PubMed  PubMed Central  Google Scholar 

  22. Liu J, Sun Z, Deng Y, Zou Y, Li C, Guo X, Xiong L, Gao Y, Li F, Zhao D (2009) Highly water-dispersible biocompatible magnetite particles with low cytotoxicity stabilized by citrate groups. Angewandte Chemie - International Edition 48(32):5875–5879

    Article  CAS  PubMed  Google Scholar 

  23. Feng B, Hong RY, Wang LS, Guo L, Li HZ, Ding J, Zheng Y, Wei DG (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A Physicochem Eng Asp 328(1–3):52–59

    Article  CAS  Google Scholar 

  24. Hou Z, Liu Y, Xu J, Zhu J (2020) Surface engineering of magnetic iron oxide nanoparticles by polymer grafting: synthesis progress and biomedical applications. Nanoscale 12(28):14957–14975

  25. Illés E, Szekeres M, Tóth IY, Szabó A, Iván B, Turcu R, Vékás L, Zupkó I, Jaics G, Tombácz E (2018) Multifunctional PEG-carboxylate copolymer coated superparamagnetic iron oxide nanoparticles for biomedical application. J Magn Magn Mater 451:710–720

    Article  ADS  Google Scholar 

  26. Ishida T, Harada M, Wang XY, Ichihara M, Irimura K, Kiwada H (2005) Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J Control Release 105:305–317

    Article  CAS  PubMed  Google Scholar 

  27. Liu S, Chiu-Lam A, Rivera-Rodriguez A, DeGroff R, Savliwala S, Sarna N, Rinaldi-Ramos CM (2021) Long circulating tracer tailored for magnetic particle imaging. Nanotheranostics 5:348–361

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bondarenko L, Illés E, Tombácz E, Dzhardimalieva G, Golubeva N, Tushavina O, Adachi Y, Kydralieva K (2021) Fabrication, microstructure and colloidal stability of humic acids loaded Fe3O4/APTES nanosorbents for environmental applications. Nanomaterials 11:1418. https://doi.org/10.3390/nano11061418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mikhaylova M, Kim DK, Berry CC, Zagorodni A, Toprak M, Curtis ASG, Muhammed M (2004) BSA immobilization on amine-functionalized superparamagnetic iron oxide nanoparticles. Chem Mater 16:2344–2354

    Article  CAS  Google Scholar 

  30. Al-Musawi S, Albukhaty S, Al-Karagoly H, Almalki F (2021) Design and synthesis of multi-functional superparamagnetic core-gold shell nanoparticles coated with chitosan and folate for targeted antitumor therapy. Nanomaterials 11:32. https://doi.org/10.3390/nano11010032

    Article  CAS  Google Scholar 

  31. Al-Musawi S, Ibraheem S, Abdul Mahdi S, Albukhaty S, Haider AJ, Kadhim AA, Kadhim KA, Kadhim HA, Al-Karagoly H (2021) Smart nanoformulation based on polymeric magnetic nanoparticles and vincristine drug: a novel therapy for apoptotic gene expression in tumors. Life 11:71. https://doi.org/10.3390/life11010071

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  32. Gowd V, Ahmad A, Tarique M, Suhail M, Zughaibi TA, Tabrez S, Khan R (2022) Advancement of cancer immunotherapy using nanoparticles-based nanomedicine. Semin Cancer Biol 86:624–644

    Article  CAS  PubMed  Google Scholar 

  33. Pati R, Shevtsov M, Sonawane A (2018) Nanoparticle vaccines against infectious diseases. Front Immunol 9:2224

    Article  PubMed  PubMed Central  Google Scholar 

  34. Nalbandian L, Patrikiadou E, Zaspalis V, Patrikidou A, Hatzidaki ECN (2015) Papandreou magnetic nanoparticles in medical diagnostic applications: synthesis, characterization and proteins conjugation. Curr Nanosci 12:455–468

    Article  ADS  Google Scholar 

  35. Jain AK, Thareja S (2019) In vitro and in vivo characterization of pharmaceutical nanocarriers used for drug delivery. Artif CellsNanomed Biotechnol 47:524–539

    Article  CAS  Google Scholar 

  36. Tyagi N, Gupta P, Khan Z, Neupane YR, Mangla B, Mehra N, Ralli T, Alhalmi A, Ali A, Al Kamaly O et al (2023) Superparamagnetic iron-oxide nanoparticles synthesized via green chemistry for the potential treatment of breast cancer. Molecules 28:2343. https://doi.org/10.3390/molecules28052343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhang F, Ni Q, Jacobson O, Cheng S, Liao A, Wang Z, He Z, Yu G, Song J, Ma Y et al (2018) Polymeric nanoparticles with a glutathione-sensitive heterodimeric multifunctional prodrug for in vivo drug monitoring and synergistic cancer therapy. Angew Chem-Int Ed 57:7066–7070

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful to the Deanship of Scientific Research at the University of Bisha for supporting this work through the Fast-Track Research Support Program.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, A.A., M.A.A.J.A.; formal analysis, A.A. and M.A.A.J.A.; investigation and data curation S.A., G.M.S., and M.M.A.; validation A.A., M.A.A.J.A., and M.S.J.; visualization A.A., M.A.A.J.A, and S.A; original draft preparation, S.A., A.A., G.M.S., M.M.A., and A.M.A.'; writing—review and editing, A.A., S.A., G.M.S., M.S.J., and A.M.A.; supervision, S.A. and G.M.S.; project administration, A.A. and S.A. All authors gave approval to the final version of the manuscript.

Corresponding authors

Correspondence to Salim Albukhaty or Ghassan M. Sulaiman.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Abboodi, A., Albukhaty, S., Sulaiman, G.M. et al. Protein Conjugated Superparamagnetic Iron Oxide Nanoparticles for Efficient Vaccine Delivery Systems. Plasmonics 19, 379–388 (2024). https://doi.org/10.1007/s11468-023-01994-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01994-8

Keywords

Navigation