Skip to main content
Log in

Tantalum Disulfide (TaS2)–Based Symmetrical Long-Range Surface Plasmon Resonance Biosensor with Ultrahigh Imaging Sensitivity and Figure of Merit

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This manuscript presents a comprehensive performance analysis of a proposed Kretschman configured tantalum disulfide (TaS2)–mediated symmetric long-range surface plasmon resonance (SLRSPR) biosensor. The sensor performance is optimized and compared for different metals (Au, Ag, and Al) and four dielectric buffer layers, DBLs (LiF, Teflon, Cytop and MgF2), to explore the best suited metal and DBL. The 27-nm thickness of Al and 1000 nm of LiF has demonstrated the best performance by achieving smaller full width at half maximum (FWHM = 0.03 Deg.), higher values of detection accuracy (DA = 33.33 1/Deg.), imaging figure of merit (IFOM = 431,933.34 Deg.−1 RIU−1) and imaging sensitivity (Simg. = 12,958 RIU−1) for the proposed SLRSPR biosensor. The proposed LRSPR sensor show 45.32 times higher Simg., 181.03 times higher IFOM and 4.37 times higher DA than conventional SPR (CSPR) sensor. Furthermore, it exhibits 6.76 times higher Simg., 13.52 times higher IFOM and 2 times higher DA than the conventional LRSPR (CLRSPR) sensor. The proposed SLRSPR biosensor shows the highest PD (401.5 nm), indicating deep analyte sensing. The work presented here highlights the significant potential of the proposed SLRSPR biosensor in biomedical applications that require highly accurate and sensitive refractive index sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The data set generated is already presented in manuscript.

References

  1. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539. https://doi.org/10.1007/s00216-003-2101-0

    Article  CAS  PubMed  Google Scholar 

  2. Singh MK, Pal S, Prajapati YK, Saini JP (2020)Sensitivity improvement of surface plasmon resonance sensor on using BlueP/MoS 2 heterostructure and antimonene. IEEE Sensors Lett 4(7). https://doi.org/10.1109/LSENS.2020.3005942

  3. Tathfif I, Yaseer AA, Rashid KS, Sagor RH (2021) Metal-insulator-metal waveguide-based optical pressure sensor embedded with arrays of silver nanorods. Opt Express 29(20):32365. https://doi.org/10.1364/oe.439974

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Hassan MF, Sagor RH, Tathfif I, Rashid KS, Radoan M (2021) An optimized dielectric-metal-dielectric refractive index nanosensor. IEEE Sens J 21(2):1461–1469. https://doi.org/10.1109/JSEN.2020.3016570

    Article  ADS  CAS  Google Scholar 

  5. Wu L et al (2016) Long-range surface plasmon with graphene for enhancing the sensitivity and detection accuracy of biosensor. IEEE Photonics J 8(2):1–9. https://doi.org/10.1109/JPHOT.2016.2533923

    Article  CAS  Google Scholar 

  6. Pal S, Verma A, Prajapati YK, Saini JP (2020) Sensitive detection using heterostructure of black phosphorus, transition metal di-chalcogenides and MXene in SPR sensor. Appl Phys A Mater Sci Process 126(10):1–10. https://doi.org/10.1007/s00339-020-03998-1

    Article  CAS  Google Scholar 

  7. Gao Z et al (2022) High-sensitivity biosensor with optical tunneling effect excited by long-range surface plasmon resonance. IEEE Photonics J 14(1). https://doi.org/10.1109/JPHOT.2021.3127569

  8. Wang Q, Jing JY, Zhao WM, Fan XC, Wang XZ (2019) A novel fiber-based symmetrical long-range surface plasmon resonance biosensor with high quality factor and temperature self-reference. IEEE Trans Nanotechnol 18:1137–1143. https://doi.org/10.1109/TNANO.2019.2947697

    Article  ADS  CAS  Google Scholar 

  9. Zhao Y, Tong RJ, Xia F, Peng Y (2019) Current status of optical fiber biosensor based on surface plasmon resonance. Biosens Bioelectron 142(June):111505. https://doi.org/10.1016/j.bios.2019.111505

  10. Wang Q, Jing JY, Wang XZ, Niu LY, Zhao WM (2020) A D-shaped fiber long-range surface plasmon resonance sensor with hiGh Q-factor and temperature self-compensation. IEEE Trans Instrum Meas 69(5):2218–2224. https://doi.org/10.1109/TIM.2019.2920187

    Article  ADS  Google Scholar 

  11. Jing JY, Wang Q, Zhao WM, Wang BT (2019) Long-range surface plasmon resonance and its sensing applications: a review. Opt Lasers Eng 112(May 2018):103–118. https://doi.org/10.1016/j.optlaseng.2018.09.013

  12. Chu LQ, Wang L, Liu XJ, Hao J, Zou XN (2016) Influence of plasma polymerized dielectric buffer layer and gold film on the excitation of long-range surface plasmon resonance. Plasmonics 11(6):1519–1524. https://doi.org/10.1007/s11468-016-0205-6

    Article  CAS  Google Scholar 

  13. Kan T, Kojo H, Iwase E, Matsumoto K, Shimoyama I (2010) Long-range surface plasmon resonance sensor with liquid micro-channels to maintain the symmetry condition of the refractive index. J Micromechanics Microengineering 20(12):125005

    Article  ADS  Google Scholar 

  14. Singh MK, Verma VK, Pal S, Prajapati YK, Saini JP (2021) Antimonene mediated long-range SPR imaging sensor with ultrahigh imaging sensitivity and figure of merit. Opt Mater (Amst) 121(August):111484. https://doi.org/10.1016/j.optmat.2021.111484

  15. Li H et al (2016) Atomic-sized pores enhanced electrocatalysis of TaS2Nanosheets for hydrogen evolution. Adv Mater 28(40):8945–8949. https://doi.org/10.1002/adma.201602502

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Yu Y et al (2015) Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat Nanotechnol 10(3):270–276. https://doi.org/10.1038/nnano.2014.323

    Article  ADS  CAS  PubMed  Google Scholar 

  17. Wang L, Liu XJ, Hao J, Chu LQ (2015) Long-range surface plasmon resonance sensors fabricated with plasma polymerized fluorocarbon thin films. Sensors Actuator B Chem 215:368–372. https://doi.org/10.1016/j.snb.2015.04.005

    Article  CAS  Google Scholar 

  18. Pal N, Maurya JB, Prajapati YK (2022) Long-range SPR imaging sensor mediated by antimonene for biomolecule sensing with ultrahigh imaging sensitivity and figure of merit. Plasmonics 17(4):1571–1580. https://doi.org/10.1007/s11468-022-01644-5

    Article  CAS  Google Scholar 

  19. Nelson SO (2006) Agricultural applications of dielectric measurements. IEEE Trans Dielectr Electr Insul 13(4):688–702. https://doi.org/10.1109/TDEI.2006.1667726

    Article  Google Scholar 

  20. Nelson S (1991) Dielectric properties of agricultural products: measurements and applications. IEEE Trans Electr Insul 26:845–869. https://doi.org/10.1109/14.99097

    Article  CAS  Google Scholar 

  21. Jia Y, Liao Y, Cai H (2022) High quality TaS2 nanosheet SPR biosensors improved sensitivity and the experimental demonstration for the detection of Hg2+. Nanomaterials 12(12). https://doi.org/10.3390/nano12122075

  22. Pal N, Maurya JB, Prajapati YK, Kumar S (2023) LiF-Ag-Si-TMDs based long-range SPR sensor in visible and NIR spectrum. Optik (Stuttg) 274(January):170556. https://doi.org/10.1016/j.ijleo.2023.170556

  23. Zhang H et al (2019) Long-range surface plasmon resonance sensor based on side-polished fiber for biosensing applications. IEEE J Sel Top Quantum Electron 25(2). https://doi.org/10.1109/JSTQE.2018.2868159

  24. Yesudasu V, Pradhan HS (2021) Performance enhancement of a novel surface plasmon resonance biosensor using thallium bromide. IEEE Trans Nanobioscience 21(2):206–215

    Article  Google Scholar 

  25. Wu L, Guo J, Xu H, Dai X, Xiang Y (2016) Ultrasensitive biosensors based on long-range surface plasmon polariton and dielectric waveguide modes. Photonics Res 4(6):262. https://doi.org/10.1364/prj.4.000262

    Article  CAS  Google Scholar 

  26. Tathfif I, Hassan MF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519(May):128429. https://doi.org/10.1016/j.optcom.2022.128429

  27. Rashid KS, Tathfif I, Yaseer AA, Hassan MF, Sagor RH (2021) Cog-shaped refractive index sensor embedded with gold nanorods for temperature sensing of multiple analytes. Opt Express 29(23):37541. https://doi.org/10.1364/oe.442954

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Yang H et al (2021) Tantalum disulfide nanosheets for the generation of polarization domain wall solitons and polarization locked vector solitons. Opt Laser Technol 149(October):2022. https://doi.org/10.1016/j.optlastec.2022.107895

    Article  CAS  Google Scholar 

  29. Chaudhari MN (2021) Thin film deposition methods: a critical review. Int J Res Appl Sci Eng Technol 9(VI):5215–5232. https://doi.org/10.22214/ijraset.2021.36154

  30. Kumar R, Pal S, Prajapati YK, Kumar S, Saini JP (2022) sensitivityimprovement of a MXene- immobilized SPR sensor with Ga-doped-ZnO for biomolecules detection. IEEE Sens J 22(7):6536–6543. https://doi.org/10.1109/JSEN.2022.3154099

    Article  ADS  CAS  Google Scholar 

  31. Singh S, Pandey S, Yadav S, Yadav RK, Singh PK, Lohia P, Dwivedi DK (2023) Numerical study among Au, Al, and Ag metal-based surface plasmon resonance sensor. J Optics. https://doi.org/10.1007/s12596-023-01107-y

  32. Tathfif I, Rashid KS, Yaseer AA, Sagor RH (2021) Alternative material titanium nitride based refractive index sensor embedded with defects : an emerging solution in sensing arena. Results Phys 29(September):104795, 2021. https://doi.org/10.1016/j.rinp.2021.104795

  33. Rashid KS, Hassan MF, Yaseer AA, Tathfif I, Sagor RH (2021) Gas-sensing and label-free detection of biomaterials employing multiple rings structured plasmonic nanosensor. Sens Bio-Sensing Res 33(July)100440. https://doi.org/10.1016/j.sbsr.2021.100440

  34. Xu Y, Hsieh CY, Wu L, Ang LK (2017) Ultrasensitive and highly accurate long-range surface plasmon resonance biosensors based on two-dimensional transition metal dichalcogenides, pp. 1–18. https://doi.org/10.1088/1361-6463/aaf0f7

  35. Xu Y, Hsieh CY, Wu L, Ang LK (2019) Two-dimensional transition metal dichalcogenides mediated long range surface plasmon resonance biosensors. J Phys D Appl Phys 52(6). https://doi.org/10.1088/1361-6463/aaf0f7

  36. Liu N, Wang S, Cheng Q, Pang B, Lv J (2021) Two-dimensional transition metal dichalcogenides-based high sensitivity lossy mode refractive index sensor. IEEE Sens J 21(5):6043–6049. https://doi.org/10.1109/JSEN.2020.3042470

    Article  ADS  CAS  Google Scholar 

  37. Feng C, Wei L, Yang H, Wang D, Xiong X, Yuan L (2021) Rotating angle modulation method for improving the measurement performance of LRSPR sensor. IEEE Sens J 21(13):14876–14886. https://doi.org/10.1109/JSEN.2021.3067925

    Article  ADS  CAS  Google Scholar 

  38. Verma VK, Kumar R, Pal S, Prajapati YK (2022) Highly sensitive MXene-immobilized long range SPR sensor for biomolecule detection. Opt Mater (Amst) 133(September):112977. https://doi.org/10.1016/j.optmat.2022.112977

  39. Tathfif I, Hassan MF, Rashid KS, Yaseer AA, Sagor RH (2022) A highly sensitive plasmonic refractive index sensor based on concentric triple ring resonator for cancer biomarker and chemical concentration detection. Opt Commun 519(February):128429. https://doi.org/10.1016/j.optcom.2022.128429

  40. Homola J, Yee SS, Gauglitz G (1999) Surface plasmon resonance sensors: review. Sens Actuators B Chem 54(1):3–15. https://doi.org/10.1016/S0925-4005(98)00321-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Virendra Kumar: simulation, formal analysis, design, simulation, modelling, writing — original draft, Sarika Pal: conceptualization, supervision, formal analysis.

Corresponding author

Correspondence to Sarika Pal.

Ethics declarations

Ethics approval

Not required as data presented here is based on numerical study.

Consent to participate

No consent is required.

Consent for publication

All authors express their consent to publish this manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, V., Pal, S. Tantalum Disulfide (TaS2)–Based Symmetrical Long-Range Surface Plasmon Resonance Biosensor with Ultrahigh Imaging Sensitivity and Figure of Merit. Plasmonics 19, 403–416 (2024). https://doi.org/10.1007/s11468-023-01993-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01993-9

Keywords

Navigation