Skip to main content

Advertisement

Log in

Theoretical/Numerical Studies of the Nanoscale-Cavity Effects on Dipole Emission, Förster Resonance Energy Transfer, and Surface Plasmon Coupling

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The electric field and radiated power of a radiating dipole located inside a spherical nano-cavity are formulated to show that the nano-cavity structure or nanoscale-cavity effect can enhance the near-field intensity inside the cavity and the far-field radiated power of the dipole. Such enhancements are caused by two contributing factors, including the classical electromagnetic scattering as formulated and the Purcell effect, which is implemented through a numerical feedback process by assuming a two-level system for the radiating dipole. The enhancement of near-field intensity results in the efficiency increase of Förster resonance energy transfer when both energy donor and acceptor are located inside the nano-cavity. By combining the enhancements of the field intensity of the donor and the radiated power of the acceptor, the color conversion efficiency can be increased through the nanoscale-cavity effect. We also numerically demonstrate that the nanoscale-cavity effect can enhance surface plasmon coupling for increasing the radiated power of a dipole located nearby an Ag nanoparticle inside a nano-cavity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

All data included in this paper are available upon request by contacting with the corresponding author.

References

  1. Purcell EM (1946) Spontaneous emission probabilities at radio frequencies. Phys Rev 69:681–681

    Google Scholar 

  2. Chen D, Xiao H, Han J (2012) Nanopores in GaN by electrochemical anodization in hydrofluoric acid formation and mechanism. J Appl Phys 112(6):064303

    Article  ADS  Google Scholar 

  3. Griffin PH, Oliver RA (2020) Porous nitride semiconductors reviewed. J Phys D: Appl Phys 53(38):383002

    Article  CAS  Google Scholar 

  4. Schwab MJ, Chen D, Han J, Pfefferle LD (2013) Aligned mesopore arrays in GaN by anodic etching and photoelectrochemical surface etching. J Phys Chem C 117(33):16890–16895

    Article  CAS  Google Scholar 

  5. Schwab MJ, Han J, Pfefferle LD (2015) Neutral anodic etching of GaN for vertical or crystallographic alignment. Appl Phys Lett 106(24):241603

    Article  ADS  Google Scholar 

  6. Tseng WJ, van Dorp DH, Lieten RR, Vereecken PM, Borghs G (2014) Anodic etching of n-GaN epilayer into porous GaN and its photoelectrochemical properties. J Phys Chem C 118(51):29492–29498

    Article  CAS  Google Scholar 

  7. Chen CH, Kuo SY, Feng HY, Li ZH, Yang S, Wu SH, Hsieh HY, Lin YS, Lee YC, Chen WC, Wu PH, Chen JC, Huang YY, Lu YJ, Kuo Y, Lin CF, Yang CC (2023) Photon color conversion enhancement of colloidal quantum dots inserted into a subsurface laterally-extended GaN nano-porous structure in an InGaN/GaN quantum-well template. Opt Express 31(4):6327–6341

    Article  ADS  CAS  PubMed  Google Scholar 

  8. Yang S, Feng HY, Lin YS, Chen WC, Kuo Y, Yang CC (2023) Effects of surface plasmon coupling on the color conversion from an InGaN/GaN quantum-well structure into colloidal quantum dots inserted into a nearby porous structure. Nanomaterials 13(2):328

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chanyawadee S, Lagoudakis PG, Harley RT, Charlton MDB, Talapin DV, Huang HW, Lin CH (2010) Increased color-conversion efficiency in hybrid light-emitting diodes utilizing non-radiative energy transfer. Adv Mater 22(5):602–606

    Article  CAS  PubMed  Google Scholar 

  10. Krishman C, Brossard M, Lee KY, Huang JK, Lin CH, Kuo HC, Charlton MDB, Lagoudakis PG (2016) Hybrid photonic crystal light-emitting diode renders 123% color conversion effective quantum yield. Optica 3(5):503–509

    Article  ADS  Google Scholar 

  11. Zhuang Z, Guo X, Liu B, Hu F, Li Y, Tao T, Dai J, Zhi T, Xie Z, Chen P, Chen D, Ge H, Wang X, Xiao M, Shi Y, Zheng Y, Zhang R (2016) High color rendering index hybrid III-nitride/nanocrystals white light-emitting diodes. Adv Funct Mater 26(1):36–43

    Article  CAS  Google Scholar 

  12. Athanasiou M, Papagiorgis P, Manoli A, Bernasconi C, Poyiatzis N, Coulon PM, Shields P, Bodnarchuk MI, Kovalenko MV, Wang T, Itskos G (2020) InGaN nanohole arrays coated by lead halide perovskite nanocrystals for solid-state lighting. ACS Appl Nano Mater 3(3):2167–2175

    Article  CAS  Google Scholar 

  13. Wan R, Li G, Gao X, Liu Z, Li J, Yi X, Chi N, Wang L (2021) Nanohole array structured GaN-based white LEDs with improved modulation bandwidth via plasmon resonance and non-radiative energy transfer. Photon Res 9(7):1213–1217

    Article  CAS  Google Scholar 

  14. Du Z, Li D, Guo W, Xiong F, Tang P, Zhou X, Zhang Y, Guo T, Yan Q, Sun J (2021) Quantum dot color conversion efficiency enhancement in micro-light-emitting diodes by non-radiative energy transfer. IEEE Electron Dev Lett 42(8):1184–1187

    Article  ADS  CAS  Google Scholar 

  15. Huang YY, Li ZH, Lai YC, Chen JC, Wu SH, Yang S, Kuo Y, Yang CC, Hsu TC, Lee CL (2022) Nanoscale-cavity enhancement of color conversion with colloidal quantum dots embedded in the surface nano-holes of a blue-emitting light-emitting diode. Opt Express 30(17):31322–31335

    Article  ADS  CAS  PubMed  Google Scholar 

  16. Förster T (1946) Energy transport and fluorescence. Naturwissenschaften 33:166–175

    ADS  Google Scholar 

  17. Demira HV, Nizamoglub S, Erdemb T, Mutluguna E, Gaponikc N, Eychmuller A (2011) Quantum dot integrated LEDs using photonic and excitonic color conversion. Nano Today 6(6):632–647

    Article  Google Scholar 

  18. Zhang F, Liu J, You G, Zhang C, Mohney SE, Park MJ, Kwak JS, Wang Y, Koleske DD, Xu J (2012) Nonradiative energy transfer between colloidal quantum dot-phosphors and nanopillar nitride LEDs. Opt Express 20(S2):A333–A339

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Ni CC, Kuo SY, Li ZH, Wu SH, Wu RN, Chen CY, Yang CC (2021) Förster resonance energy transfer in surface plasmon coupled color conversion processes of colloidal quantum dots. Opt Express 29(3):4067–4081

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Chen YP, Ni CC, Wu RN, Kuo SY, Su YC, Huang YY, Chen JW, Hsu YC, Wu SH, Chen CY, Wu PH, Kiang YW, Yang CC (2021) Combined effects of surface plasmon coupling and Förster resonance energy transfer on the light color conversion behaviors of colloidal quantum dots on an InGaN/GaN quantum-well nanodisk structure. Nanotechnology 32(13):135206

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Yang S, Lai YC, Feng HY, Lee YC, Li ZH, Wu SH, Lin YS, Hsieh HY, Chu CJ, Chen WC, Kuo Y, Yang CC (2023) Enhanced color conversion of quantum dots located in the hot spot of surface plasmon coupling. IEEE Photon Technol Lett 35(5):273–276

    Article  ADS  CAS  Google Scholar 

  22. Kuo Y, Ting SY, Liao CH, Huang JJ, Chen CY, Hsieh C, Lu YC, Chen CY, Shen KC, Lu CF, Yeh DM, Wang JY, Chuang WH, Kiang YW, Yang CC (2011) Surface plasmon coupling with radiating dipole for enhancing the emission efficiency of a light-emitting diode. Opt Express 19(14):A914–A929

    Article  CAS  PubMed  Google Scholar 

  23. Kuo Y, Chang WY, Lin CH, Yang CC, Kiang YW (2015) Evaluating the blue-shift behaviors of the surface plasmon coupling of an embedded light emitter with a surface Ag nanoparticle by adding a dielectric interlayer or coating. Opt Express 23(24):30709–30720

    Article  ADS  CAS  PubMed  Google Scholar 

  24. Cai CJ, Wang YT, Ni CC, Wu RN, Chen CY, Kiang YW, Yang CC (2020) Emission behaviors of colloidal quantum dots linked onto synthesized metal nanoparticles. Nanotechnology 31(9):095201

    Article  ADS  CAS  PubMed  Google Scholar 

  25. Wang YT, Liu CW, Chen PY, Wu RN, Ni CC, Cai CJ, Kiang YW, Yang CC (2019) Color conversion efficiency enhancement of colloidal quantum dot through its linkage with synthesized metal nanoparticle on a blue light-emitting diode. Opt Lett 44(23):5691–5694

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Chang WY, Kuo Y, Kiang YW, Yang CC (2019) Simulation study on light color conversion enhancement through surface plasmon coupling. Opt Express 27(12):A629–A642

    Article  CAS  PubMed  Google Scholar 

  27. Lin CH, Chiang HC, Wang YT, Yao YF, Chen CC, Tse WF, Wu RN, Chang WY, Kuo Y, Kiang YW, Yang CC (2018) Efficiency enhancement of light color conversion through surface plasmon coupling. Opt Express 26(18):23629–23640

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Chen CY, Ni CC, Wu RN, Kuo SY, Li CH, Kiang YW, Yang CC (2021) Surface plasmon coupling effects on the Förster resonance energy transfer from quantum dot into rhodamine 6G. Nanotechnology 32(29):295202

    Article  CAS  Google Scholar 

  29. Jin T, Uhlikova N, Xu Z, Zhu Y, Huang Y, Egap E, Lian T (2020) Competition of Dexter, Förster, and charge transfer pathways for quantum dot sensitized triplet generation. J Chem Phys 152(21):214702

    Article  ADS  CAS  PubMed  Google Scholar 

  30. Boyd RW (2008) Nonlinear Optics, 3rd edn. Academic press, pp 278–293

  31. Loudon R (1991) The quantum theory of light, 2nd edn. Oxford university press, pp 78–79

  32. Meystre P, Sargent M III (1999) Elements of quantum optics. Springer, p 344

  33. Brus LE (1984) Electron-electron and electron-hole interactions in small semiconductor crystallites: The size dependence of the lowest excited electronic state. J Chem Phys 80(9):4403–4409

    Article  ADS  CAS  Google Scholar 

  34. Kagan CR, Murray CB, Nirmal M, Bawendi MG (1995) Electronic energy transfer in CdSe quantum dot solids. Phys Rev Lett 76(9):1517–1520

    Article  ADS  Google Scholar 

  35. Novotny L, Hecht B (2006) Principles of nano-optics. Cambridge University Press, pp 265–269 and 287

  36. Kavokin AV, Baumberg JJ (2007) Weak-coupling microcavities. Chapter 6, Microcavities, 1st edn. Oxford University Press, pp 216–221

  37. Jackson JD (1975) Classical Electrodynamics, 2nd edn. Wiley, p 395

  38. Kuo Y, Lu YJ, Shih CY, Yang CC (2021) Simulation study on the enhancement of resonance energy transfer through surface plasmon coupling in a GaN porous structure. Opt Express 29(26):43182–43192

    Article  ADS  CAS  Google Scholar 

  39. Kuo Y, Shih CY, Yang CC (2022) Simulation study of the effect of surface plasmon coupling on Förster resonance energy transfer behavior. Plasmonics 17(3):989–1000

    Article  CAS  Google Scholar 

  40. Palik ED (1991) Handbook of optical constants of solids. Academic Press

    Google Scholar 

  41. Limonov MF, Rybin MV, Poddubny AN, Kivshar YS (2017) Fano resonances in photonics Nature photon 11(9):543–554

    Article  CAS  Google Scholar 

Download references

Funding

This research was funded by the Ministry of Science and Technology, Taiwan, the Republic of China, under the grant of MOST 111-2221-E-002-073 and MOST 110-2221-E-002-131.

Author information

Authors and Affiliations

Authors

Contributions

Yang Kuo: formulation and numerical algorithm preparation, numerical computations; C. C. (Chih-Chung) Yang: concept proposing, data interpretations, writing.

Corresponding author

Correspondence to C. C. (Chih-Chung) Yang.

Ethics declarations

Ethics Approval

This is a theoretical/numerical study on the nanoscale-cavity effects.

Consent to Participate

This is a theoretical/numerical study of the nanoscale-cavity effects on dipole emission, Förster resonance energy transfer, and surface plasmon coupling.

Consent for Publication

All authors of this paper agree to publish our theoretical/numerical research.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuo, Y., Yang, C.CC. Theoretical/Numerical Studies of the Nanoscale-Cavity Effects on Dipole Emission, Förster Resonance Energy Transfer, and Surface Plasmon Coupling. Plasmonics 19, 273–285 (2024). https://doi.org/10.1007/s11468-023-01991-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01991-x

Keywords

Navigation