Skip to main content

Advertisement

Log in

Numerical Investigation of Ag-Franckeite-Barium Titanium-BP-Based Highly Performed Surface Plasmon Resonance Sensor for Virus SARS-CoV-2 Detection

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The severe respiratory syndrome coronavirus-2 (SARS-CoV-2) is researching the COVID-19 pandemic epidemic as a worldwide health concern. Analytical tools that are sensitive, quick to produce results, affordable, and accurate with high precision are necessary to observe infected individuals for effective quarantine and prompt treatment. Therefore, this paper presents a numerical investigation of the Kretschmann configuration-based surface plasmon resonance (SPR) sensor, a label-free, highly sensitive, low-cost device for detecting SARS-CoV-2. The proposed sensor comprises of six layers, and is Bor Kron7 (BK7)-silver (Ag)-Franckeite-barium titanium (BaTiO3)-black phosphorus (BP)-sensing medium. For the detection process, the transfer matrix method is used along with and the angular interrogation procedure to analyze the performance of the sensor in terms of sensitivity, quality factor (QF), detection accuracy (DA), and limit of detection (LOD). Initially, the thickness of Ag and BaTiO3 layers is optimized by obtaining better sensitivity. Furthermore, to manifest the impression of the proposed sensor, we calculate the sensitivity performance for different structures, which are comprised of considered materials. Moreover, with the optimized structure, the SPR sensing parameters are analyzed for different SARS-CoV-2’s refractive index values and found the extreme sensitivity of 331.54°/RIU, QF of 119.69 RUI−1, DA of 3.11, and LOD of 1.51E − 5. Finally, electric field intensity factor responses are plotted, following by performance comparison between the proposed work and existing work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

Simulation software.

Code Availability

Not applicable.

References

  1. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, Chu DKW, Bleicker T, Brünink S, Schneider J, Schmidt ML, Mulders DG (2020) Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance 25(3):2000045

    Article  PubMed  PubMed Central  Google Scholar 

  2. Loeffelholz MJ, Tang YW (2020) Laboratory diagnosis of emerging human coronavirus infections—the state of the art. Emerging Microbes & Infections 9(1):747–756

    Article  CAS  Google Scholar 

  3. Hassanpour SH, Nikbakht J (2021) A comprehensive review on covid-19. Zahedan J Res Med Sci 23(4):e109853

    Article  Google Scholar 

  4. Astuti I (2020) Ysrafl: Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr Clin Res Rev 14(4):407–412

    Article  Google Scholar 

  5. Wong SK, Li W, Moore MJ, Choe H, Farzan M (2004) A 193-amino acid fragment of the SARS coronavirus S protein efficiently binds angiotensin-converting enzyme 2. J Biol Chem 279(5):3197–3201

    Article  CAS  PubMed  Google Scholar 

  6. Weir RA (2020) Letter by Weir Regarding Article, Angiotensin-converting enzyme 2: SARS-CoV-2 receptor and regulator of the renin-angiotensin system: celebrating the 20th anniversary of the discovery of ACE2. Circ Res 127(2):e44–e45

    Article  CAS  PubMed  Google Scholar 

  7. Akib TBA, Mostufa S, Rana MM, Hossain MB, Islam MR (2023) A performance comparison of heterostructure surface plasmon resonance biosensor for the diagnosis of novel coronavirus SARS-CoV-2. Opt Quant Electron 55(5):448

    Article  CAS  Google Scholar 

  8. World Health Organization (WHO) (2022) Novel Coronavirus 2019 (COVID-19). World Health Organization, Geneva, Switzerland

  9. Mina MJ, Parker R, Larremore DB (2020) Rethinking Covid-19 test sensitivity—a strategy for containment. N Engl J Med 383(22):e120

    Article  CAS  PubMed  Google Scholar 

  10. GeurtsvanKessel CH, Okba NM, Igloi Z, Bogers S, Embregts CW, Laksono BM, Leijten LM, Rokx C, Rijnders B, Rahamat-Langendoen JC, van Kampen JJ (2020) An evaluation of COVID-19 serological assays informs future diagnostics and exposure assessment. Nat Commun 11(1):1–10

    Article  Google Scholar 

  11. Harris R (2020) How reliable are COVID-19 tests? Depends which one you mean. NPR. https://www.npr.org/sections/health-shots/2020/05/01/847368012/how-reliable-are-covid-19-tests-depends-which-one-you-mean

  12. Mak Gannon CK, Cheng Peter KC, Lau Stephen SY, Wong Kitty KY, Lau CS, Lam Edman TK, Chan Rickjason CW, Tsang Dominic NC (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129:104500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kontou PI, Braliou GG, Dimou NL, Nikolopoulos G, Bagos PG (2020) Antibody tests in detecting SARS-CoV-2 infection: a meta-analysis. Diagnostics 10(5):319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Ramachandran A, Huyke DA, Sharma E, Sahoo MK, Huang C, Banaei N, Santiago JG (2020) Electric field-driven microfluidics for rapid CRISPR-based diagnostics and its application to detection of SARS-CoV-2. Proc Natl Acad Sci 117(47):29518–29525

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  15. Talebian S, Wallace GG, Schroeder A, Stellacci F, Conde J (2020) Nanotechnology-based disinfectants and sensors for SARS-CoV-2. Nat Nanotechnol 15(8):618–621

    Article  CAS  PubMed  ADS  Google Scholar 

  16. Akib TBA, Mou SF, Rahman MM, Rana MM, Islam MR, Mehedi IM, Mahmud MP, Kouzani AZ (2021) Design and numerical analysis of a graphene-coated SPR biosensor for rapid detection of the novel coronavirus. Sensors 21(10):3491

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  17. Nor SNS, Rasanang NS, Karman S, Zaman WSWK, Harun SW, Arof H (2021) A review: surface plasmon resonance-based biosensor for early screening of SARS-CoV2 infection. IEEE Access

  18. Kushwaha AS, Kumar A, Kumar R, Srivastava S (2018) A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photon Nanostruct Fund Appl 31(99–106):29

    Google Scholar 

  19. Kumar D, Dwivedi A, Srivastava M, Srivastava A, Srivastava A, Srivastava S (2021) Gold nanorods modified Eu: Y2O3 dispersed PVA film as a highly sensitive plasmon-enhanced luminescence probe for excellent and fast non-enzymatic detection of H2O2 and glucose. Optik 228:166130

    Article  CAS  ADS  Google Scholar 

  20. Pandey PS, Raghuwanshi SK, Shadab A, Ansari MTI, Tiwari UK, Kumar S (2022) SPR based biosensing chip for COVID-19 diagnosis-a review. IEEE Sens J

  21. Maddali H, Miles CE, Kohn J, O’Carroll DM (2021) Optical biosensors for virus detection: prospects for SARS-CoV-2/COVID-19. ChemBioChem 22(7):1176–1189

    Article  CAS  PubMed  Google Scholar 

  22. Zhang J, Mai X, Hong X, Chen Y, Li X (2022) Optical fibre SPR biosensor with a solid-phase enzymatic reaction device for glucose detection. Sens Actuators B Chem 366:131984

    Article  CAS  Google Scholar 

  23. Eslami-Kaliji F, Mirahmadi-Zare SZ, Nazem S, Shafe N, Ghaedi R, Asadian-Esfahani MH (2022) A label-free SPR biosensor for specific detection of TLR4 expression; introducing of 10-HDA as an antagonist. Int J Biol Macromol 217:142–149

    Article  CAS  PubMed  Google Scholar 

  24. Karki B, Salah NH, Srivastava G et al (2023) a simulation study for dengue virus detection using surface plasmon resonance sensor heterostructure of silver, barium titanate, and cerium oxide. Plasmonics. https://doi.org/10.1007/s11468-023-01907-9

    Article  PubMed  PubMed Central  Google Scholar 

  25. Karki B, Uniyal A, Pal A, Srivastava V (2022) Advances in surface plasmon resonance-based biosensor technologies for cancer cell detection. International Journal of Optics 9(2022):1. https://doi.org/10.1155/2022/1476254

    Article  CAS  Google Scholar 

  26. Karki B, Jha A, Pal A et al (2022) Sensitivity enhancement of refractive index-based surface plasmon resonance sensor for glucose detection. Opt Quant Electron 54:595. https://doi.org/10.1007/s11082-022-04004-z

    Article  CAS  Google Scholar 

  27. Singh TI, Singh P, Karki B (2023) Early detection of chikungunya virus utilizing the surface plasmon resonance comprising a silver-silicon-PtSe2 multilayer structure. Plasmonics 18:1173–1180. https://doi.org/10.1007/s11468-023-01840-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Karki B, Ansari G, Uniyal A et al (2023) PtSe2 and black phosphorus employed for sensitivity improvement in the surface plasmon resonance sensor. J Comput Electron 22:106–115. https://doi.org/10.1007/s10825-022-01975-w

    Article  CAS  Google Scholar 

  29. Karki B, Ramya KC, Sandhya Devi RS et al (2022) Titanium dioxide, black phosphorus and bimetallic layer-based surface plasmon biosensor for formalin detection: numerical analysis. Opt Quant Electron 54:451. https://doi.org/10.1007/s11082-022-03875-6

    Article  CAS  Google Scholar 

  30. Karki B, Vasudevan B, Uniyal A, Pal A, Srivastava V (2022) Hemoglobin detection in blood samples using a graphene-based surface plasmon resonance biosensor. Optik 270:169947. https://doi.org/10.1016/j.ijleo.2022.169947

    Article  CAS  ADS  Google Scholar 

  31. Karki B, Trabelsi Y, Uniyal A et al (2022) Zinc sulfide, silicon dioxide, and black phosphorus based ultra-sensitive surface plasmon biosensor. Opt Quant Electron 54:107. https://doi.org/10.1007/s11082-021-03480-z

    Article  CAS  Google Scholar 

  32. Vasimalla Y, Singh L (2022) Design and analysis of planar waveguide-based SPR sensor for formalin detection using Ag-chloride-BP structure. IEEE Transactions on nanobioscience

  33. Cherifi A, Bouhafs B (2017) Potential of SPR sensors based on multilayer interfaces with gold and LHM for biosensing applications. Photonic Sens 7:199–205

    Article  CAS  ADS  Google Scholar 

  34. Kushwaha AS, Kumar A, Kumar R, Srivastava S (2018) A study of surface plasmon resonance (SPR) based biosensor with improved sensitivity. Photon Nanostruct Fund Appl 31:99–106

    Article  ADS  Google Scholar 

  35. Vasimalla Y, Pradhan HS, Pandya RJ (2020) SPR performance enhancement for DNA hybridization employing black phosphorus, silver, and silicon. Appl Opt 59(24):7299–7307

    Article  CAS  PubMed  ADS  Google Scholar 

  36. Homola J (2008) Surface plasmon resonance sensors for the detection of chemical and biological species. Chem Rev 108(2):462–493. https://doi.org/10.1021/cr068107d

    Article  CAS  PubMed  Google Scholar 

  37. Masson JF (2014) Surface plasmon resonance clinical biosensors for medical diagnostics. ACS Sensors 1(5):677–687. https://doi.org/10.1021/acssensors.5b00163

    Article  Google Scholar 

  38. Vasimalla Y, Pradhan HS, Pandya RJ (2021) Sensitivity enhancement of the SPR biosensor for Pseudomonas bacterial detection employing a silicon-barium titanate structure. Appl Opt 60(19):5588–5598

    Article  PubMed  ADS  Google Scholar 

  39. Ulman A (1996) Formation and structure of self-assembled monolayers. Chem Rev 96(4):1533–1554. https://doi.org/10.1021/cr9502357

    Article  CAS  PubMed  Google Scholar 

  40. Karki B, Sharma S, Singh Y, Pal A (2021) Sensitivity enhancement of surface plasmon resonance biosensor with 2-D franckeite nanosheets. Plasmonics 1–8. https://doi.org/10.1007/s11468-021-01495-6

  41. Wang Q, Niu LY, Jing JY, Zhao WM (2020) Barium titanate film based fibre optic surface plasmon sensor with high sensitivity. Opt Laser Tech 124:105899

    Article  CAS  Google Scholar 

  42. Sharma AK, Pandey AK (2018) Blue phosphorene/MoS2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photon Technol Lett 30:595–598

    Article  CAS  ADS  Google Scholar 

  43. Mao N, Tang J, Xie L, Wu J, Han B, Lin J, Deng S, Ji W, Xu H, Liu K, Tong L (2016) Optical anisotropy of black phosphorus in the visible regime. Am Chem Soc 138:300–305

    Article  CAS  Google Scholar 

  44. Wu L, Guo J, Wang Q, Lu S, Dai X, Xiang Y, Fan D (2017) Sensitivity enhancement by using few-layer black phosphorus graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sens Actuators B 249:54254–54258

    Article  Google Scholar 

  45. Gan S, Zhao Y, Dai X, Xiang Y (2019) Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results in Physics 13:102320

    Article  Google Scholar 

  46. Moznuzzaman M, Khan I, Islam MR (2021) Nano-layered surface plasmon resonance-based highly sensitive biosensor for virus detection: q theoretical approach to detect SARS-CoV-2. AIP Adv 11(6):065023

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  47. Taya SA, Daher MG, Almawgani AH, Hindi AT, Zyoud SH, Colak I (2023) Detection of virus SARS-CoV-2 using a surface plasmon resonance device based on BiFeO3-graphene layers. Plasmonics 10:1–8

    Google Scholar 

  48. Uddin SMA, Chowdhury SS, Kabir E (2021) Numerical analysis of a highly sensitive surface plasmon resonance sensor for sars-cov-2 detection. Plasmonics 16(6):2025–2037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kumar A, Kumar A, Srivastava SK (2022) Silicon nitride-BP-based surface plasmon resonance highly sensitive biosensor for virus SARS-CoV-2 detection. Plasmonics 17(3):1065–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liao G et al (2019) Ag-based nanocomposites: synthesis and applications in catalysis. Nanoscale 11(15):7062–7096. https://doi.org/10.1039/c9nr01408j28

    Article  CAS  PubMed  Google Scholar 

  51. Al-Shakarchi EK, Mahmood NB (2011) Three techniques used to produce BaTiO3 fine powder. J Mod Phys

  52. Maurya JB, Prajapati YK (2020) Experimental demonstration of DNA hybridization using graphene based plasmonic sensor chip. J Lightwave Techn 38(18):5191–5198. https://doi.org/10.1109/JLT.2020.2998138

    Article  CAS  ADS  Google Scholar 

  53. Asaduzzaman Jabin Md, Rana Md Juwel, Al-Zahrani Fahad Ahmed, Paul Bikash Kumar, Ahmed Kawsar, Bui Francis Minhthang (2022) Novel detection of diesel adulteration using silver-coated surface plasmon resonance sensor. Plasmonics 17(2):467–478

    Article  Google Scholar 

  54. Yesudasu V, Pradhan HS (2021) Performance enhancement of a novel surface plasmon resonance biosensor using thallium bromide. IEEE Trans Nanobiosci 21(2):206–215

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: Vasimalla Yesudasu, Himansu Shekhar Pradhan, Rahul Jashvantbhai Pandya; Data curation, formal analysis, investigation, and methodology: B. Thiyaneswaran, S. Vanaja, Md. Amzad Hossain, and Ahmed Nabih Zaki Rashed; Resources and software: Vasimalla Yesudasu, Himansu Shekhar Pradhan, and Rahul Jashvantbhai Pandya; supervision, validation, visualization, and writing—original draft: B. Thiyaneswaran, S. Vanaja, Md. Amzad Hossain, and Ahmed Nabih Zaki Rashed; writing—review and editing: Vasimalla Yesudasu, Himansu Shekhar Pradhan, and Rahul Jashvantbhai Pandya.

Corresponding authors

Correspondence to Md. Amzad Hossain or Ahmed Nabih Zaki Rashed.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yesudasu, V., Pradhan, H.S., Pandya, R.J. et al. Numerical Investigation of Ag-Franckeite-Barium Titanium-BP-Based Highly Performed Surface Plasmon Resonance Sensor for Virus SARS-CoV-2 Detection. Plasmonics 19, 167–178 (2024). https://doi.org/10.1007/s11468-023-01985-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01985-9

Keywords

Navigation