Skip to main content
Log in

Effect of Silica Shell on Electronic Excitations Dynamics in Au/SiO\(_2\) Core/Shell Nanoparticles

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The electron excitations dynamics in spherical Au/SiO\(_2\) core-shell nanoparticles excited by 150 fs laser pulses at wavelength of 400 nm was studied by femtosecond transient absorption spectroscopy. It is shown that the electron–phonon and phonon-phonon relaxation times in a nanoparticle increase in the presence of SiO\(_2\) dielectric shell. The obtained transient extinction kinetics of NPs was used to fit the theoretical profile with the relaxation temperature of the excitation dynamics of electron and lattice nanoparticles, as well as their environment under the laser pulses action. The electron–phonon coupling and phonon-phonon relaxation constants for Au/SiO\(_2\) NPs and Au NPs have been established. For Au/SiO\(_2\) core-hell nanoparticles, the electron–phonon coupling constant was \(\gamma _{core/shell}=5\cdot 10^{16}\) \(W\cdot m^{-3}\cdot K^{-1}\), and the heat loss constant was \(h_{core/shell}=4\cdot 10^{8}\) \(W\cdot m^{-2}\cdot K^{-1}\). In the case of gold nanospheres, these constants are \(\gamma _{NPs}=7\cdot 10^{16}\) \(W\cdot m^{-3}\cdot K^{-1}\) and \(h_{NPs}=8\cdot 10^{8}\) \(W\cdot m^{-2}\cdot K^{-1}\), respectively. It is concluded that the SiO\(_2\) dielectric shell prevents the defragmentation of the gold core when it reaches the melting point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

The data presented in this study are available on request from the corresponding author.

References

  1. Wang L, Kafshgari MH, Meunier M (2020) Optical properties and applications of plasmonic-metal nanoparticles. Adv Func Mater 30(51):2005400. https://doi.org/10.1002/adfm.202005400

    Article  CAS  Google Scholar 

  2. Chaudhuri RG, Paria S (2011) Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chem Rev 112(4):2373–2433. https://doi.org/10.1021/cr100449n

    Article  CAS  Google Scholar 

  3. Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55. https://doi.org/10.1039/df9511100055

    Article  Google Scholar 

  4. Grevtseva IG, Chevychelova TA, Enikeev EI, Derepko VN, Smirnov MS, Latyshev AN, Golovinski PA, Ovchinnikov OV, Selyukov AS (2021) Spectral manifestations of the formation of Au/SiO2 core/shell nanoparticles. Bull Lebedev Phys Inst 48(3):81–86. https://doi.org/10.3103/s1068335621030052

    Article  ADS  Google Scholar 

  5. Pham X-H, Park S-M, Ham K-M, Kyeong S, Son BS, Kim J, Hahm E, Kim Y-H, Bock S, Kim W, Jung S, Oh S, Lee SH, Hwang DW, Jun B-H (2021) Synthesis and application of silica-coated quantum dots in biomedicine. Int J Mol Sci 22(18):10116. https://doi.org/10.3390/ijms221810116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Guo P, Xu J, Zhuang X, Hu W, Zhu X, Zhou H, Tang L, Pan A (2013) Surface plasmon resonance enhanced band-edge emission of CdS–SiO2 core–shell nanowires with gold nanoparticles attached. J. Mater. Chem. C 1(3):566–571. https://doi.org/10.1039/c2tc00088a

    Article  CAS  Google Scholar 

  7. Ovchinnikov OV, Smirnov MS, Grevtseva IG, Derepko VN, Chevychelova TA, Leonova LY, Perepelitsa AS, Kondratenko TS (2021) Luminescent properties of colloidal mixtures of Zn0.5Cd0.5S quantum dots and gold nanoparticles. Kondensirovannye sredy i mezhfaznye granitsy. Condensed Matter and Interphases 23(1). https://doi.org/10.17308/kcmf.2021.23/3302

  8. Grevtseva IG, Chevychelova TA, Derepko VN, Ovchinnikov OV, Smirnov MS, Perepelitsa AS, Parshina AS (2021) Spectral manifestations of the exciton-plasmon interaction of Ag2S quantum dots with silver and gold nanoparticles. Kondensirovannye sredy i mezhfaznye granitsy. Condensed Matter and Interphases 23(1):25–31. https://doi.org/10.17308/kcmf.2021.23/3294

  9. Dulkeith E, Morteani AC, Niedereichholz T, Klar TA, Feldmann J, Levi SA, van Veggel FCJM, Reinhoudt DN, Möller M, Gittins DI (2002) Fluorescence quenching of dye molecules near gold nanoparticles: radiative and nonradiative effects. Phys Rev Lett 89(20). https://doi.org/10.1103/physrevlett.89.203002

  10. Bauch M, Toma K, Toma M, Zhang Q, Dostalek J (2013) Plasmon-enhanced fluorescence biosensors: a review. Plasmonics 9(4):781–799. https://doi.org/10.1007/s11468-013-9660-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ovchinnikov OV, Smirnov MS, Chevychelova TA, Zvyagin AI, Selyukov AS (2022) Nonlinear absorption enhancement of methylene blue in the presence of Au/SiO2 core/shell nanoparticles. Dyes and Pigments 197. https://doi.org/10.1016/j.dyepig.2021.109829

  12. Wang Y, Xie X, Goodson T (2005) Enhanced third-order nonlinear optical properties in dendrimer-metal nanocomposites. Nano Lett 5(12):2379–2384. https://doi.org/10.1021/nl051402d

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Elhani S, Ishitobi H, Inouye Y, Ono A, Hayashi S, Sekkat Z (2020) Surface enhanced visible absorption of dye molecules in the near-field of gold nanoparticles. Sci Rep 10(1). https://doi.org/10.1038/s41598-020-60839-0

  14. Umezawa M, Ueya Y, Ichihashi K, Dung DTK, Soga K (2023) Controlling molecular dye encapsulation in the hydrophobic core of core–shell nanoparticles for in vivo imaging. Biomedical Materials Devices. https://doi.org/10.1007/s44174-023-00073-0

    Article  PubMed  Google Scholar 

  15. Li Y, Liang Q, Zhou L, Liu J, Liu Y (2022) Metal nanoparticles: a platform integrating diagnosis and therapy for rheumatoid arthritis. J Nanopart Res 24(4). https://doi.org/10.1007/s11051-022-05469-5

  16. Yang L, Wei Z, Tayebee R, Koushki E, Bai H (2022) Effects of laser penetration depth and temperature on the stability of afatinib-loaded gold nanoparticles: an optical limiting study. J Nanopart Res 24(7). https://doi.org/10.1007/s11051-022-05530-3

  17. Staechelin YU, Hoeing D, Schulz F, Lange H (2021) Size-dependent electron–phonon coupling in monocrystalline gold nanoparticles. ACS Photon 8(3):752–757. https://doi.org/10.1021/acsphotonics.1c00078

  18. Lin Z, Zhigilei LV, Celli V (2008) Electron-phonon coupling and electron heat capacity of metals under conditions of strong electron-phonon nonequilibrium. Phys Rev B 77(7). https://doi.org/10.1103/physrevb.77.075133

  19. Hu M, Petrova H, Hartland GV (2004) Investigation of the properties of gold nanoparticles in aqueous solution at extremely high lattice temperatures. Chem Phys Lett 391(4–6):220–225. https://doi.org/10.1016/j.cplett.2004.05.016

    Article  ADS  CAS  Google Scholar 

  20. Hu M, Wang X, Hartland GV, Salgueiriño-Maceira V, Liz-Marzán LM (2003) Heat dissipation in gold–silica core-shell nanoparticles. Chem Phys Lett 372(5–6):767–772. https://doi.org/10.1016/s0009-2614(03)00506-2

    Article  ADS  CAS  Google Scholar 

  21. Gogoi H, Maddala BG, Ali F, Datta A (2021) Role of solvent in electron-phonon relaxation dynamics in core-shell Au-SiO2 nanoparticles. Chemphyschem 22(21):2201–2206. https://doi.org/10.1002/cphc.202100592

    Article  CAS  PubMed  Google Scholar 

  22. Kobayashi Y, Nonoguchi Y, Wang L, Kawai T, Tamai N (2012) Dual transient bleaching of Au/PbS hybrid core/shell nanoparticles. The Journal of Physical Chemistry Letters 3(9):1111–1116. https://doi.org/10.1021/jz300248p

    Article  CAS  PubMed  Google Scholar 

  23. Yu K, You G, Polavarapu L, Xu Q-H (2011) Bimetallic Au/Ag core–shell nanorods studied by ultrafast transient absorption spectroscopy under selective excitation. The Journal of Physical Chemistry C 115(29):14000–14005. https://doi.org/10.1021/jp201648v

    Article  CAS  Google Scholar 

  24. Letfullin RR, George TF, Duree GC, Bollinger BM (2008) Ultrashort laser pulse heating of nanoparticles: comparison of theoretical approaches. Advances in Optical Technologies 2008:1–8. https://doi.org/10.1155/2008/251718

    Article  Google Scholar 

  25. Hashimoto S, Uwada T, Hagiri M, Shiraishi R (2010) Mechanistic aspect of surface modification on glass substrates assisted by single shot pulsed laser-induced fragmentation of gold nanoparticles. The Journal of Physical Chemistry C 115(12):4986–4993. https://doi.org/10.1021/jp106830x

    Article  CAS  Google Scholar 

  26. Chevychelova TA, Ovchinnikov OV, Smirnov MS, Zvyagin AI, Ponyavina AN, Tikhomirov SA, Minh PH, Binh NT (2023) Picosecond dynamics features of electronic excitations in gold nanorods. J Russ Laser Res 44(1):82–91. https://doi.org/10.1007/s10946-023-10111-3

    Article  CAS  Google Scholar 

  27. Blokhin AP (2003) Femtosecond dynamics of optically induced anisotropy of complex molecules in the gas phase. J Appl Spectrosc 70(1):70–78. https://doi.org/10.1023/a:1023272425247

    Article  MathSciNet  CAS  Google Scholar 

  28. Lock JA, Laven P (2012) Understanding light scattering by a coated sphere part 1: theoretical considerations. J Opt Soc Am A 29(8):1489. https://doi.org/10.1364/josaa.29.001489

    Article  ADS  Google Scholar 

  29. Anisimov SI, Kapeliovich BL, Perelman TL (1974) Electron emission from metal surfaces exposed to ultrashort laser pulses. Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki 66:776–781

    ADS  Google Scholar 

  30. Anderson OL, Isaak DG, Yamamoto S (1989) Anharmonicity and the equation of state for gold. J Appl Phys 65(4):1534–1543. https://doi.org/10.1063/1.342969

    Article  ADS  CAS  Google Scholar 

  31. Chase M (1998) NIST-JANAF Thermochemical tables, 4th Edition. American Institute of Physics, -1

  32. Huang J, Zhang Y, Chen JK (2009) Ultrafast solid–liquid–vapor phase change of a gold film induced by pico- to femtosecond lasers. Appl Phys A 95(3):643–653. https://doi.org/10.1007/s00339-009-5156-8

    Article  ADS  CAS  Google Scholar 

  33. Werner D, Furube A, Okamoto T, Hashimoto S (2011) Femtosecond laser-induced size reduction of aqueous gold nanoparticles: in situ and pump-probe spectroscopy investigations revealing Coulomb explosion. The Journal of Physical Chemistry C 115(17):8503–8512. https://doi.org/10.1021/jp112262u

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Results of TEM investigations with the Libra 120 TEM were obtained on the equipment of the Center of collective usage of scientific equipment of Voronezh State University.

Funding

These studies were supported by the Russian Foundation for Basic Research under Grant No. 20-52-81005, the Belarusian Republican Foundation for Fundamental Research under Grant No. 20EA-006, and the Vietnam Academy of Sciences and Technology under Grant No. QTRU05.02/21-23. The study was supported by the Ministry of Science and Higher Education of the Russian Federation under Agreement No. 075-15-2021-1351 in part of structural analysis of gold nanoparticles.

Author information

Authors and Affiliations

Authors

Contributions

Mikhail Smirnov: investigation, data curation, writing—original draft preparation. Tamara Chevychelova: methodology, investigation, prepared figures. Oleg Ovchinnikov: conceptualization, writing—original draft preparation. Andrey Zvyagin: investigation, prepared figures. Sergey Tikhomirov: conceptualization, writing—original draft preparation. Alina Ponyavina: investigation, prepared figures and manuscript file. Pham Hong Minh: methodology, investigation. Nguyen Thanh Binh: methodology, investigation.

Corresponding author

Correspondence to Mikhail Smirnov.

Ethics declarations

Ethics Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smirnov, M., Chevychelova, T., Ovchinnikov, O. et al. Effect of Silica Shell on Electronic Excitations Dynamics in Au/SiO\(_2\) Core/Shell Nanoparticles. Plasmonics 19, 311–318 (2024). https://doi.org/10.1007/s11468-023-01982-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01982-y

Keywords

Navigation