Skip to main content
Log in

Photonic Crystal Fibre–Based Plasmon Sensor for Glucose Level Detection in Urine

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This paper introduces a “photonic crystal fibre (PCF)”–based “surface plasmon sensor” that can measure the amount of glucose in urine. The sensor incorporates TiO2 and gold as plasmonic materials, arranged in layered configurations to enhance performance. The finite element approach is used to simulate the proposed sensor for measuring the amount of glucose in urine. A thin coating of analyte layer is coated over TiO2 layer of photonic crystal fibre (PCF) to enable external sensing. The sensing capacity is investigated for the four different glucose concentration levels—2.5gm/dl, 5gm/dl, 10gm/dl and 20gm/dl—whose equivalent refractive index (RI) is 1.338, 1.341, 1.346 and 1.358 respectively. A perfectly matched layer (PML) serves as the boundary condition for the topmost layer of the PCF. By varying the geometrical parameters, an optimized structural design is obtained which achieves a wavelength sensitivity of 4583.33 nm/RIU and amplitude sensitivity of 219.065 RIU−1 respectively. Experimental validation for different urine samples demonstrated better accuracy and sensitivity than the available methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article since no datasets were generated or analyzed during the current study.

References

  1. Jorgenson RC, Yee SS (1993) A fiber-optic chemical sensor based on surface plasmon resonance, Sens Actuators B Chem 12(3):213–220, ISSN 0925–4005. https://doi.org/10.1016/0925-4005(93)80021-3

  2. Long S, Wang E, Wu M, Zhu H, Xu N, Wang Y, Cao J (2022) Sensing absorptive fluids with backside illuminated grating coupled SPR sensor fabricated by nanoimprint technology, Sens Actuator A Phys 337:113416, ISSN 0924–4247, https://doi.org/10.1016/j.sna.2022.113416

  3. Kaur V, Singh S (2019) Design of titanium nitride coated PCF-SPR sensor for liquid sensing applications, Optical Fiber Technology, 48:159–164, ISSN 1068–5200, https://doi.org/10.1016/j.yofte.2018.12.015

  4. Daniyal WMEMM (2020) Yap Wing Fen, Nurul Illya Muhamad Fauzi, Hazwani Suhaila Hashim, Nur Syahira Md Ramdzan, and Nur Alia Sheh Omar, Recent advances in surface plasmon resonance optical sensors for potential application in environmental monitoring. Sens Mater 32(12):4191–4200

    CAS  Google Scholar 

  5. Balbinot S, Srivastav AM, Vidic J, Abdulhalim I, Manzano M (2021) Plasmonic biosensors for food control, Trends Food Sci 111:128–140, ISSN 0924–2244, https://doi.org/10.1016/j.tifs.2021.02.057

  6. Zhou J, Qi Q, Wang C, Qian Y, Liu G, Wang Y, Fu L (2019) Surface plasmon resonance (SPR) biosensors for food allergen detection in food matrices. Biosens Bioelectron. 142:111449. https://doi.org/10.1016/j.bios.2019.111449. Epub 2019 Jun 21. PMID: 31279816.

  7. Fan X (2022) Sensitive surface plasmon resonance label-free biosensor on a fiber end-facet. Light Sci Appl 11:325. https://doi.org/10.1038/s41377-022-01025-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Verma RK, Sharma AK, Gupta BD (2008) Surface plasmon resonance based tapered fiber optic sensor with different taper profiles. Opt Commun 281(6):1486–1491. ISSN 0030–4018. https://doi.org/10.1016/j.optcom.2007.11.007

  9. Kaur V, Singh S (2020) Design of D-Shaped PCF-SPR sensor with dual coating of ITO and ZnO conducting metal oxide, Optik 220:165135, ISSN 0030–4026, https://doi.org/10.1016/j.ijleo.2020.165135

  10. Arasu PT, Noor ASM, Shabaneh AA, Yaacob MH, Lim HN, Mahdi MA (2016) Fiber Bragg grating assisted surface plasmon resonance sensor with graphene oxide sensing layer, Opt Commun 380:260–266, ISSN 0030–4018, https://doi.org/10.1016/j.optcom.2016.05.081

  11. Guo T, González-Vila Á, Loyez M, Caucheteur C (2017) Plasmonic optical fiber-grating immunosensing: a review. Sensors 17:2732. https://doi.org/10.3390/s17122732

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  12. Russell P (2003) Photonic Crystal Fibers. Science 299:358–362. https://doi.org/10.1126/science.1079280

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wang E, Han Q, Zhou X, Yuan H, Li J (2022) A bend-resistant photonic crystal fiber with large effective mode area, Optical Fiber Technology,Volume 71:102902, ISSN 1068–5200, https://doi.org/10.1016/j.yofte.2022.102902

  14. Prabu K, Malavika R (2019) Highly birefringent photonic crystal fiber with hybrid cladding, Opt Fiber Technol 47:21–26, ISSN 1068–5200, https://doi.org/10.1016/j.yofte.2018.11.015

  15. Raja SJ, Rao SS, Charlcedony R (2020) Design and analysis of dispersion-compensating chalcogenide photonic crystal fiber with high birefringence. SN Appl Sci 2:499. https://doi.org/10.1007/s42452-020-2308-0

    Article  CAS  Google Scholar 

  16. Mollah MA, Yousufali M, Faysal MRBA, Hasan MR, Hossain MB, Amiri IS (2020) Highly sensitive photonic crystal fiber salinity sensor based on Sagnac interferometer, Results in Phys 16:103022, ISSN 2211–3797, https://doi.org/10.1016/j.rinp.2020.103022

  17. Wang D, Zhu W, Yi Z, Ma G, Gao X, Dai Bo, Yang Yu, Zhou G, Pinghui Wu, Liu C (2022) Highly sensitive sensing of a magnetic field and temperature based on two open ring channels SPR-PCF. Opt Express 30:39055–39067

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Zhao YanJin, Song NingFang, Gao F, XiaoBin Xu, Liu JiaQi, Liu C (2021) High-precision photonic crystal fiber-based pressure sensor with low-temperature sensitivity. Opt Express 29:32453–32463

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Vyas AK, Gangwar RK, Kumar S (2022) Elliptical air hole PCF-based low-cost sensor for refractive index and temperature detection: design and analysis, Opt Fiber Technol 73:103060, ISSN 1068–5200, https://doi.org/10.1016/j.yofte.2022.103060

  20. Liu Z, Tam HY (2018) Photonic crystal fiber pressure sensors. In Computational photonic sens 261–285. Springer International Publishing. https://doi.org/10.1007/978-3-319-76556-3_11

  21. Ramola A, Marwaha A, Singh S (2021) Design and investigation of a dedicated PCF SPR biosensor for CANCER exposure employing external sensing. Appl Phys A 127:643. https://doi.org/10.1007/s00339-021-04785-2

    Article  ADS  CAS  Google Scholar 

  22. Islam N, Arif MFH, Yousuf MA, Asaduzzaman S (2023) Highly sensitive open channel based PCF-SPR sensor for analyte refractive index sensing, Results in Phys 46,106266, ISSN 2211–3797, https://doi.org/10.1016/j.rinp.2023.106266

  23. Chen N, Chang M, Lu X, Zhou J, Zhang X (2019) Photonic crystal fiber plasmonic sensor based on dual optofluidic channel. Sens (Basel) 19(23):5150. https://doi.org/10.3390/s19235150. (PMID:31775240;PMCID:PMC6928958)

    Article  ADS  CAS  Google Scholar 

  24. Mawa Nijhum J, Ahmed T, Hossain MA, Atai J, Hai NH (2022) Microchannel-embedded D-shaped photonic crystal fiber-based highly sensitive plasmonic biosensor. Appl Sci 12:4122. https://doi.org/10.3390/app12094122

  25. Binu S, Mahadevan Pillai VP, Pradeepkumar V, Padhy BB, Joseph CS, Chandrasekaran N (2009) Fibre optic glucose sensor, Mater Sci Eng: C 29(1):183–186, ISSN 0928–4931, https://doi.org/10.1016/j.msec.2008.06.007

  26. Kumagai T, Tottori Y, Miyata R, Kajioka H (2014) Glucose sensor with a Sagnac interference optical system. Appl Opt 53:720–726

    Article  ADS  PubMed  Google Scholar 

  27. Yang XC, Lu Y, Wang MT, Yao JQ (2016) A photonic crystal fiber glucose sensor filled with silver nanowires, Opt Commun 359:279–284, ISSN 0030–4018, https://doi.org/10.1016/j.optcom.2015.09.102

  28. Yan Y, Toulouse J, Velchev I, Rotkin SV (2008) Decoupling and asymmetric coupling in triple-core photonic crystal fibers. J Opt Soc Am B 25:1488–1495

    Article  ADS  CAS  Google Scholar 

  29. Azab MY, Hameed MFO, Heikal AM, Obayya SSA, Swillam MA, “Surface plasmon photonic crystal fiber biosensor for glucose monitoring,”, (2017) International Applied Computational Electromagnetics Society Symposium - Italy (ACES). Firenze, Italy 2017:1–2. https://doi.org/10.23919/ROPACES.2017.7916401

    Article  Google Scholar 

  30. Rifat AA, Amouzad Mahdiraji G, Shee YG, Shawon MJ, Mahamd Adikan FR (2016) A novel photonic crystal fiber biosensor using surface plasmon resonance, Procedia Eng 140:1–7, ISSN 1877–7058, https://doi.org/10.1016/j.proeng.2015.08.1107

  31. Dash JN, Jha R (2014) "SPR biosensor based on polymer PCF coated with conducting metal oxide," in IEEE Photonics Technology Letters 26(6):595–598. https://doi.org/10.1109/LPT.2014.2301153

  32. Hasan MR, Akter S, Rifat AA, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4:18. https://doi.org/10.3390/photonics4010018

    Article  CAS  Google Scholar 

  33. Wang F, Sun Z, Liu C, Sun T, Chu PK (2018) A high-sensitivity photonic crystal fiber (PCF) based on the surface plasmon resonance (SPR) biosensor for detection of density alteration in non-physiological cells (DANCE), Opto-Electronics Review 26(1):50–56, ISSN 1230–3402. https://doi.org/10.1016/j.opelre.2018.01.001

  34. Rahaman M, Jibon RH, Ahsan M et al (2022) Glucose level measurement using photonic crystal fiber–based plasmonic sensor. Plasmonics 17:1–11. https://doi.org/10.1007/s11468-021-01497-4

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Sandip Das was responsible for generating concepts, conducting simulations and preparing the initial draft of the paper. Riya Sen took on the role of optimizing the simulated design, editing the paper and preparing the final draft. Ultimately, Sandip Das and Riya Sen collaborated to finalize the paper.

Corresponding author

Correspondence to Sandip Das.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Sen, R. Photonic Crystal Fibre–Based Plasmon Sensor for Glucose Level Detection in Urine. Plasmonics 19, 65–74 (2024). https://doi.org/10.1007/s11468-023-01980-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01980-0

Keywords

Navigation