Skip to main content
Log in

Sensitivity of the Surface Plasmon Polariton Waves at the Interface of Metal and Dielectric Medium Using Doppler Broadening Effect

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The angular interrogation of sensitivity of the surface plasmon polariton waves (SPPs) is investigated at the interface under the effect of Doppler broadening dielectric medium and silver metal using prism geometry. A useful manipulation over the sensitivity of SPPs is obtained with Doppler broadening effect and parameters of the probe and control fields. The maximum sensitivity is investigated to 3000 deg/RIU with control field detuning, while the manimum sensitivity is reported to 300 deg/RIU with doppler width. The modified result of sensitivity of this manuscript shows potential applications in radiations guiding, photovoltaic devices, and solar cells devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data was used in this study.

References

  1. Farmani A, Mir A, Sharifpour Z (2018) Appl Surf Sci 453:358

    Article  ADS  CAS  Google Scholar 

  2. Humayun K, Haneef M (2018) Can J Phys 96:98

    Article  ADS  Google Scholar 

  3. Haneef M, Mohammad S, Akbar J, Arif S, Zahir M, Humayun K (2012) Chin Phys Lett 29:073201

    Article  ADS  Google Scholar 

  4. Khan H, Haneef M (2017) Birefringence in a chiral medium, via temporal cloaking. Laser Phys 27:055201

    Article  ADS  Google Scholar 

  5. Ahmad F et al (2022) Laser Phys 32:065206

    Article  ADS  Google Scholar 

  6. Barnes WL, Dereux A, Ebbesen TW (2003) Surface plasmon subwavelength optics. Nature. https://doi.org/10.1038/nature01937

    Article  PubMed  Google Scholar 

  7. Pines D (1953) A collective description of electron interactions: IV. Electron interaction in metals. Phys Rev 92:626

    MathSciNet  CAS  Google Scholar 

  8. Zhang J, Zhang L, Xu W (2012) Surface plasmon polaritons: physics and applications. J Phys D: Appl Phys 45:113001

    Article  ADS  Google Scholar 

  9. Bludov YV, Vasilevskiy MI, Peres NMR (2010) EPL 92:68001

    Article  ADS  Google Scholar 

  10. Orlita C et al (2012) Nano Lett 12:2470

    Article  ADS  PubMed  Google Scholar 

  11. Sreekanth KV et al (2012) Sci Rep 2:737

    Article  PubMed  PubMed Central  Google Scholar 

  12. Zhang T, Shan F (2014) Development and application of surface plasmon polaritons on optical amplification. Nanomaterials. https://doi.org/10.1155/2014/495381

    Article  PubMed  PubMed Central  Google Scholar 

  13. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater. https://doi.org/10.1038/nmat2162

    Article  PubMed  Google Scholar 

  14. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater. https://doi.org/10.1038/nmat2629

    Article  PubMed  Google Scholar 

  15. Linic S, Christopher P, Ingram DB (2011) Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat Mater. https://doi.org/10.1038/nmat3151

    Article  PubMed  Google Scholar 

  16. Han Z, Bozhevolnyi SI (2013) Radiation guiding with surface plasmon polaritons. Reports on progress in physics Physical Society (Great Britain). https://doi.org/10.1088/0034-4885/76/1/016402

    Article  PubMed  Google Scholar 

  17. Gobin AM, Lee MH, Halas NJ, James WD, Drezek RA, West JL (2007) Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy. Nano Lett. https://doi.org/10.1021/nl070610y

    Article  PubMed  Google Scholar 

  18. Mecklenburg M, Hubbard WA, White ER, Dhall R, Cronin SB, Aloni S, Regan BC (2015) Thermal measurement. Nanoscale temperature mapping in operating microelectronic devices. Science (New York, N.Y.). 10.1126/science.aaa2433

  19. Shalabney A, Abdulhalim I (2011) Sensitivity-enhancement methods for surface plasmon sensors. Laser Photonics Rev 5:571–606

    Article  ADS  CAS  Google Scholar 

  20. Vala M (2015) Complex diffractive structures for surface plasmon resonance sensors. Doctoral Thesis, Institute of Photonics and Electronics, Academy of Sciences of the Czech Republic, Czech Republic. Accessed on Nov. 23, 2020

  21. Huang YH, Ho HP, Wu SY, Kong SK (2012) Detecting phase shifts in surface plasmon resonance: a review. Adv Opt Tech 1-12

  22. Jiri Homola, Marek Piliarik (2006) Surface plasmon resonance based sensors. Springer

    Google Scholar 

  23. Maji PS, Shukla MK, Das R (2018) Blood component detection based on miniaturized self-referenced hybrid Tamm-plasmon-polariton sensor. Sensors and Actuators B: Chemical 255(2018):729–734

    Article  CAS  Google Scholar 

  24. Akbari E, Buntat Z, Afroozeh A, Pourmand SE, Farhang Y, Sanati P (2016) Silicene and graphene nano materials in gas sensing mechanism. RSC Advances 6(85):81647–81653

    Article  ADS  CAS  Google Scholar 

  25. Islam MN, Yadav S, Haque MH, Munaz A, Islam F, Al Hossain MS, Gopalan V, Lam AK, Nguyen NT, Shiddiky MJ (2017) Optical biosensing strategies for DNA methylation analysis. Biosensors and Bioelectronics 92:668–678

    Article  PubMed  Google Scholar 

  26. Maji PS, Das R (2017) Hybrid-Tamm-plasmon-polariton based self-reference temperature sensor. Journal of Lightwave Technology 35(14):2833–2839

    Article  ADS  CAS  Google Scholar 

  27. Shahrokhian S, Ghalkhani M, Adeli M, Amini MK (2009) Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modifcation of glassy carbon electrode: application to sensitive voltammetric determination of thioridazine. Biosensors and Bioelectronics 24(11):3235–3241

    Article  CAS  PubMed  Google Scholar 

  28. Khozeymeh F, Razaghi M (2018) Cylindrical optical resonators: fundamental properties and bio-sensing characteristics. Journal of Optics 20(4)045301

  29. Xiao Y (2003) Doppler effect in larval biology: theory and applications. Ecological Modelling 165

  30. Kash MM, Sautenkov VA (1999) Phys Rev Lett 82:5229

    Article  ADS  CAS  Google Scholar 

  31. Kasapi A, Jain M, Yin GY, Haris SE (1995) Phys Rev Lett 74:2447

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Rahman H, Jabar MSA, Khan AA, Ahmad I, Bacha BA (2014) Laser Phys 24:115404

    Article  ADS  Google Scholar 

  33. Agarwal GS, Dey TN (2003) Slow light in Doppler-broadened two-level systems. Phys Rev A 68:063816

    Article  ADS  Google Scholar 

  34. Scully MO, Zubairy MS (1997) Quantum optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  35. Ahmad S, Ahmad A, Bacha BA, Khan AA, Abdul Jabar MS (2017) Eur Phys J Plus 132:506

    Article  Google Scholar 

  36. Khan Q, Bacha BA, Khesro A (2023) The hybrid modes of sensitivity of surface plasmon polaritons using metal and chiral medium geometry. Plasmonics 1-9

  37. Homola J, Yee SS, Myszka D (2008) Surface plasmon resonance biosensors. Optical Biosensors 185-242

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qaisar Khan did the primary work, performed all the simulation, and wrote the first draft. Aizaz Khan helped him in draft. Majid Khan reviewed the paper. Amir Khesro and Bakht Amin Bacha helped writing the draft, conceptualized the project, and supervised the work. All authors read the article and helped in improving it.

Corresponding author

Correspondence to Qaisar Khan.

Ethics declarations

Ethical Approval

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khan, Q., Khan, A., Bacha, B.A. et al. Sensitivity of the Surface Plasmon Polariton Waves at the Interface of Metal and Dielectric Medium Using Doppler Broadening Effect. Plasmonics 19, 123–129 (2024). https://doi.org/10.1007/s11468-023-01978-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01978-8

Keywords

Navigation