Skip to main content
Log in

Formation of Agshell/Aucore Bimetallic Nanoparticles by Pulsed Laser Ablation Method: Effect of Colloidal/Solution Concentration

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 23 September 2023

This article has been updated

Abstract

This experimental study’s main goal is to investigate the impact of various silver concentrations on the optical characteristics of Agshell/Aucore bimetallic nanoparticles. By using the pulsed laser ablation in liquid (PLAL) technique on the gold target at the bottom of the container full of silver colloids, the silver/gold nanoparticles are ablated. Colloidal silver nanoparticles, created through a chemical reduction process, are inside the container. The second harmonic of the pulsed Nd:YAG laser is used to irradiate the colloidal mixture of mixed nanoparticles at a wavelength of 532 nm. The Agshell/Aucore bimetallic nanoparticles are created by transferring laser energy to gold nanoparticles, which have a peak absorption of around 530 nm. The experimental variables are the volumetric ratio of nanoparticle solutions. X-ray diffraction pattern (XRD), spectroscopy in the UV–Vis-NIR and IR ranges, dynamic light scattering (DLS), energy-dispersive spectroscopy (EDS), photoluminescence spectrum (PL), and Fourier transform infrared spectroscopy (FT-IR) are used to identify bimetallic nanoparticles. Additionally, FE-SEM and TEM pictures are used to look at the size and morphology of nanoparticles. In order to test the reactivity of silver nanoparticles in the bimetallic system, one goal of this research is the production of stable bimetallic systems and the examination of optical properties. Additionally, a bimetallic structure with a variable silver concentration’s shell thickness and catalytic qualities is examined. All samples in the visible range have dipole absorption observable. On the other hand, the first sample with a lower silver concentration exhibits quadrupole absorption.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of Data and Materials

The data that support the findings of this study are included in the articles.

Change history

Abbreviations

NPs:

Nanoparticles

MNPs:

Monometallic nanoparticles

AuNPs:

Gold nanoparticles

AgNPs:

Silver nanoparticles

Ag/Au BNPs:

Silver/gold bimetallic nanoparticles

PVP:

Polyvinyl pyrrolidine

PLAL:

Pulsed laser ablation in liquid

CRM:

Chemical reduction method

LSPR:

Localized surface plasmon resonance

DIW:

Distilled water

FWHM:

Full width at half maximum

UV:

Ultraviolet region

VIS:

Visible region

XRD:

X-ray diffraction pattern

UV-Vis:

Ultraviolet-visible spectroscopy

FE-SEM:

Field-emission scanning electron microscopy

TEM :

Tunneling electron microscopy

EDX:

Energy-dispersive spectroscopy

FT-IR:

Fourier transform infrared spectroscopy

PL:

Photoluminescence spectroscopy

References

  1. Kumar KH, Venkatesh N, Bhowmik H, Kuila A (2018) Metallic nanoparticle: a review, Biomedical Journal of Scientific & Technical Research. Biomed J Sci Tech Res 4:3765–3775. https://doi.org/10.26717/BJSTR.2018.04.001011

  2. Sharma G, Kumar D, Kumar A, Al-Muhtaseb AH, Pathania D, Naushad M, Mola GT (2017) Revolution from monometallic to trimetallic nanoparticle composites, various synthesis methods and their applications: a review. Mater Sci Eng, C 71:1216–1230. https://doi.org/10.1016/j.msec.2016.11.002

    Article  CAS  Google Scholar 

  3. Wang H, Guo X, Fu S, Yang T, Wen Y, Yang H (2015) Optimized core-shell Au@Ag nanoparticles for label-free Raman determination of trace Rhodamine B with cancer risk in food product. Food Chem 188:137–142. https://doi.org/10.1016/j.foodchem.2015.04.122

    Article  CAS  PubMed  Google Scholar 

  4. Hu D, Xiao Y, Liu H, Wang H, Li J, Zhou B, Liu P, Shen M, Shi X (2018) Loading of Au/Ag bimetallic nanoparticles within electrospun PVA/PEI nanofibers for catalytic applications. Colloids Surf A 552:9–15. https://doi.org/10.1016/j.colsurfa.2018.05.013

    Article  CAS  Google Scholar 

  5. Arora N, Thangavelu K (2020) Karanikolos GN (2020) Bimetallic nanoparticles for antimicrobial applications. Front Chem 8:412. https://doi.org/10.3389/fchem.2020.00412

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  6. Bhatia P, Verma SS, Sinha MM (2019) Tunable plasmonic properties of elongated bimetallic alloys nanoparticles towards deep UV-NIR absorbance and sensing. J Quant Spectrosc Radiat Transf 241:106751. https://doi.org/10.1016/j.jqsrt.2019.106751

  7. Duan S, Wang R (2013) Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Materials International 23:113–126. https://doi.org/10.1016/j.pnsc.2013.02.001

    Article  Google Scholar 

  8. Amendola V, Meneghetti M (2009) Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 11:3805–3821. https://doi.org/10.1039/b900654k

    Article  CAS  PubMed  Google Scholar 

  9. Bitton O, Gutman DB, Berkovits R, Frydman A (2017) Multiple periodicity in a nanoparticle-based single-electron transistor. Nat Comun 8. https://doi.org/10.1038/s41467-017-00442-6

  10. Jagannath G, Eraiah B, Jayanthi K, Keshri SR, Som S, Vinitha G, Pramod AG, Krishnakanth KN, Devarajulu G, Balaji S, Venugopal Rao S, Annapurna K, Das S, Allu AR (2020) Influence of gold nanoparticles on the nonlinear optical and photoluminescence properties of Eu2O3 doped alkali borate glasses. Phys Chem Chem Phys 22:2019–2032. https://doi.org/10.1039/C9CP05783H

    Article  CAS  PubMed  Google Scholar 

  11. Amirinejad R, Shirvani-Farsani Z, Mohebbi S (2021) The application of DNA-functionalized gold nanoparticles for detection of metabolites and nucleic acids in personalized medicine. Pers M J 6:23–29

    Google Scholar 

  12. Ma ZC, Zhang YL, Han B, Chen QD, Sun HB (2018) Femtosecond-laser direct writing of metallic micro/nanostructures: from fabrication strategies to future applications. Small Methods 1700413. https://doi.org/10.1002/smtd.201700413

  13. Yaqoob AA, Umar K, Ibrahim MNM (2020) Silver nanoparticles: various methods of synthesis, size affecting factors and their potential applications–a review. Appl Nanosci 10:1369–1378. https://doi.org/10.1007/s13204-020-01318-w

    Article  CAS  ADS  Google Scholar 

  14. Jiang X, Fan X, Xu W, Zhang R, Wu G (2019) Biosynthesis of bimetallic Au-Ag nanoparticles using Escherichia coli and its biomedical applications. ACS Biomater Sci Eng 6:680–689. https://doi.org/10.1021/acsbiomaterials.9b01297

    Article  CAS  PubMed  Google Scholar 

  15. Barveen NR, Wang TJ, Chang YH (2020) Synergistic action of star-shaped Au/Ag nanoparticles decorated on AgFeO2 for ultrasensitive SERS detection of a chemical warfare agent on real samples Anal. Methods 12:1342–1352. https://doi.org/10.1039/c9ay02347j

    Article  CAS  Google Scholar 

  16. Mahfouz R, Brenier A, Roumie M, Nsouli B (2010) Nanoparticles for catalytic applications obtained by laser ablation of metallic and bimetallic targets in liquids. J Nanopart Res 12:3123–3136. https://doi.org/10.1007/s11051-010-9949-7

    Article  CAS  Google Scholar 

  17. Liu P, Cui H, Wang CX, Yang GW (2010) From nanocrystal synthesis to functional nanostructure fabrication: laser ablation in liquid. Phys Chem Chem Phys 12:3942. https://doi.org/10.1039/b918759f

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Claverie J, Chaker M, Ma D (2017) Colloidal metal nanoparticles prepared by laser ablation and their applications. ChemPhysChem 18:986–1006. https://doi.org/10.1002/cphc.201601220

    Article  CAS  PubMed  Google Scholar 

  19. Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem 15:3027. https://doi.org/10.1039/c2cp42895d

    Article  CAS  Google Scholar 

  20. Kaçuş H, Metin Ö, Sevim M, Biber M, liBaltakesmez A, Aydoğan Ş (2021) comparative study on the effect of monodisperse Au and Ag nanoparticles on the performance of organic photovoltaic devices. Opt Mater 116:111082. https://doi.org/10.1016/j.optmat.2021.111082

  21. McGilvray KL, Fasciani C, Bueno-Alejo CJ, Schwartz-Narbonne R, Scaiano JC (2012) Photochemical strategies for the seed-mediated growth of gold and gold−silver nanoparticles. Langmuir 28:16148–16155. https://doi.org/10.1021/la302814v

    Article  CAS  PubMed  Google Scholar 

  22. Pei F, Wu S, Wang G, Xu M, Wang SY, Chen LY (2009) Electronic and optical properties of noble metal oxides M2O (M = Cu, Ag and Au): first-principles study. J Korean Phys Soc 55:1243–1249. https://doi.org/10.3938/jkps.55.1243

    Article  CAS  Google Scholar 

  23. Zhang Q, Xie J, Lee JY, Zhang J, Boothroyd C (2008) Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small 4:67–71. https://doi.org/10.1002/smll.200701196

    Article  CAS  Google Scholar 

  24. Berahim N, Basirun WJ, Leo BF, Johan MR (2018) Synthesis of bimetallic gold-silver (Au-Ag) nanoparticles for the catalytic reduction of 4-nitrophenol to 4-aminophenol. Catalysts 8:412. https://doi.org/10.3390/catal18100412

    Article  Google Scholar 

  25. Kumar N, Alam F, Dutta V (2014) Deposition of Ag and Au-Ag alloy nanoparticle films by spray pyrolysis technique with tuned plasmonic properties. J Alloy Compd 585:312–317. https://doi.org/10.1016/j.jallcom.2013.09.145

    Article  CAS  Google Scholar 

  26. Monga A, Pal B (2014) Improved catalytic activity and surface electro-kinetics of bimetallic Au-Ag core-shell nanocomposites. New J Chem 39:304–313. https://doi.org/10.1039/C4NJ01419G

    Article  CAS  Google Scholar 

  27. Arora N, Mehta A, Mishra A, Basu S (2018) 4-Nitrophenol reduction catalysed by Au-Ag bimetallic nanoparticles supported on LDH: homogeneous vs. heterogeneous catalysis. Appl Clay Sci 151:1–9. https://doi.org/10.1016/j.clay.2017.10.015

    Article  CAS  Google Scholar 

  28. Shenya DS, Mathewa J, Philip D (2011) Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract and dried leaf of Anacardium occidentale. Spectrochemical Acta Part A 79:254–262. https://doi.org/10.1016/j.saa.2011.02.051

    Article  CAS  ADS  Google Scholar 

  29. AbdelHamid AA, Al-Ghobashy M, Fawzy M, Mohamed M, Abdel-Mottaleb MMSA (2013) Phytosynthesis of Au, Ag and Au-Ag bimetallic nanoparticles using aqueous extract of sago pondweed (Potamogeton pectinatus L.). ACS Sustainable Chem Eng 1:1520–1529. https://doi.org/10.1021/sc4000972

    Article  CAS  Google Scholar 

  30. Sharma C, Ansari S, Ansari MS, Satsangee SP, Srivastava MM (2020) Single-step green route synthesis of Au/Ag bimetallic nanoparticles using clove buds extract: enhancement in antioxidant bio-efficacy and catalytic activity. Mater Sci Eng C 116:111153. https://doi.org/10.1016/j.msec.2020.111153

  31. Estakhri S, Darabi E, Adergani BA, Elahi SM (2022) Photoluminescence study of Au-Ag bimetallic nanoparticles supported on mesoporous silica SBA-15. J Theor Appl Phys 16:1–6. https://doi.org/10.30495/jtap.162229

  32. Zakaria R, Hamdan KS, Che Noh SM, Supangat A, Sookhakian M (2015) Surface plasmon resonance and photoluminescence studies of Au and Ag micro-flowers. Opt Mater 5:5. https://doi.org/10.1364/OME.5.000943

    Article  CAS  Google Scholar 

  33. Devi KD, Sharma A, Ojha S, Parkash J, Vij A, Sharma RK, Singh F (2022) Synthesis of bimetallic AuAg nanoparticles by sequential ion implantation for modifying surface-plasmon-resonance properties. Mater Lett 308:131283. https://doi.org/10.1016/j.matlet.2021.131283

  34. Herrera A, Restrepo OA, Balzaretti NM (2023) Formation of Au@Ag bimetallic nanoparticles via ion implantation and its effects on boosting the near-infrared emission of Er3+ ions in germanate glass for applications in optical amplifiers. J Phys Chem C 127:133–141. https://doi.org/10.1021/acs.jpcc.2c07998

    Article  CAS  Google Scholar 

  35. Zubair M, Rafique MS, Khalid A, Yaqub T, Shahid MF, Alomar SY, Shar MA (2023) The fabrication of gold–silver bimetallic colloids by microplasma: a worthwhile strategy for counteracting the surface activity of avian influenza virus. Crystals 13:340. https://doi.org/10.3390/cryst13020340

    Article  CAS  Google Scholar 

  36. Kvitek O, Havelka V, Vesely M, Reznickova A, Svorcik V (2020) Preparation of alloyed and “core-shell” Au/Ag bimetallic nanostructures on glass substrate by solid state dewetting. J Alloys Compd 829:154627. https://doi.org/10.1016/j.jallcom.2020.154627

  37. Bonvicini SN, Shi Y (2022) Formation and removal of alloyed bimetallic Au-Ag nanoparticles from silicon substrates for tunable surface plasmon resonance. ACS Appl Nano Mater 5:14850–14861. https://doi.org/10.1021/acsanm.2c03154

    Article  CAS  Google Scholar 

  38. Nikov RG, Nedyalkov NN, Atanasov PA, Karashanov DB (2018) Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water. J Phys 992:012046. https://doi.org/10.1088/1742-6596/992/1/012046

  39. Tarasenko NV, Butsen AV (2010) Laser synthesis and modification of composite nanoparticles in liquids. Quantum Electron 40:986–1003. https://doi.org/10.1070/QE2010v040n11ABEH014446

    Article  CAS  ADS  Google Scholar 

  40. Kuladeep R, Jyothi L, Alee KS, Deepak KLN, Rao DN (2012) Laser-assisted synthesis of Au-Ag alloy nanoparticles with tunable surface plasmon resonance frequency. Optical material express 2:161–172. https://doi.org/10.1364/OME.2.000161

    Article  CAS  ADS  Google Scholar 

  41. Sebastian S, Linslal CL, Vallbhan CPG, Nampoori VPN, Radhakrishnan P, Kailasnath M (2015) Formation of Au–Ag nanoalloy through Au core/Ag shell intermediatephase by laser ablation. Chem Phys Lett 628:25–29. https://doi.org/10.1016/j.cplett.2015.03.034

    Article  CAS  ADS  Google Scholar 

  42. AdibAmini S, Sari AH, Dorranian D (2023) Optical properties of synthesized Au/Ag nanoparticles using 532 nm and 1064 nm pulsed laser ablation: effect of solution concentration. SN Appl Sci 5:122. https://doi.org/10.1007/s42452-023-05310-1

    Article  CAS  Google Scholar 

  43. Prabakar K, Sivalingam P, Rabeek SIM, Muthuselvam M, Devarajan N, Arjunan A, Karthick R, Suresh MM, Wembonyama JP (2013) Evaluation of antibacterial efficacy of phyto fabricated silver nanoparticles using Mukia scabrella (Musumusukkai) against drug resistance nosocomial gram negative bacterial pathogens. Colloids Surf, B 104:282–288. https://doi.org/10.1016/j.colsurfb.2012.11.041

    Article  CAS  Google Scholar 

  44. Nudelman R, Gavriely S, Bychenko D, Barzilay M, Gulakhmedova T, Gazit E, Richter S (2021) Bio-assisted synthesis of bimetallic nanoparticles featuring antibacterial and photothermal properties for the removal of biofilms. Journal of Nanobiotechnology 19:452. https://doi.org/10.1186/s12951-021-01183-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsuji T, Thang DH, Okazaki Y, Nakanishi M, Tsuboi Y, Tsuji M (2008) Preparation of silver nanoparticles by laser ablation in polyvinylpyrrolidone solutions. Appl Surf Sci 254:5224–5230. https://doi.org/10.1016/j.apsusc.2008.02.048

    Article  CAS  ADS  Google Scholar 

  46. Olea-Mejía O, Fernández-Mondragón M, Rodríguez-de la Concha G, Camacho-López M (2015) SERS-active Ag, Au and Ag-Au alloy nanoparticles obtained by laser ablation in liquids for sensing methylene blue. Appl Surf Sci 348:66–70. https://doi.org/10.1016/j.apsusc.2015.01.075

  47. Solati E, Dorranian D (2015) Comparison between silver and gold nanoparticles prepared by pulsed laser ablation in distilled water. J Clust Sci 26:727–742. https://doi.org/10.1007/s10876-014-0732-2

    Article  CAS  Google Scholar 

  48. Vinod M, Gopchandran KG (2015) Ag@Au core-shell nanoparticles synthesized by pulsed laser ablation in water: effect of plasmon coupling and their SERS performance. Spectrochim Acta Part A Mol Biomol Spectrosc 149:913–919. https://doi.org/10.1016/j.saa.2015.05.004

    Article  CAS  Google Scholar 

  49. Vinod M, Biju V, Gopchandran KG (2016) Studies on plasmon characteristics and the local density of states of Au and Ag based nanoparticles. Superlattices Microstruct 89:369–377. https://doi.org/10.1016/j.spmi.2015.11.035

    Article  CAS  ADS  Google Scholar 

  50. Awwad NS, Abd El-Kader MFH, Ibrahium HA, Asnag GM, Morsi MA (2021) Green synthesis of different ratios from bimetallic gold: silver nanoparticles core@shell via laser ablation scattered in Chitosan-PVA matrix and its electrical conductivity behavior. Compos Commun 24:100678. https://doi.org/10.1016/j.coco.2021.100678

  51. Mostafa AM, Mwafy EA, Awwad NS, Ibrahium HA (2021) Au@Ag core/shell nanoparticles prepared by laser-assisted method for optical limiting applications. J Mater Sci: Mater Electron 32:14728–14739. https://doi.org/10.1007/s10854-021-06028-9

    Article  CAS  Google Scholar 

  52. Al-Azawi MA, Bidin N, Bououdina M, Mohammad SM (2016) Preparation of gold and gold-silver alloy nanoparticles for enhancement of plasmonic dye-sensitized solar cells performance. Sol Energy 126:93–104. https://doi.org/10.1016/j.solener.2015.12.043

    Article  CAS  ADS  Google Scholar 

  53. Abed MA, Mutlak FAH, Ahmed AF, Nayef UM, Abdulridha SK (2021) Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. J Phys Conf Ser 1795:012013. https://doi.org/10.1088/1742-6596/1795/1/012013

  54. Nikov RG, Nedyalkov NN, Atanasov PA, Karashanova DB (2018) Synthesis of bimetallic nanostructures by nanosecond laser ablation of multicomponent thin films in water. J Phys 992:012046. https://doi.org/10.1088/1742-6596/992/1/012046

  55. Derkachova A, Kolwas K, Demchenko I (2016) Dielectric function for gold in plasmonics applications: size dependence of plasmon resonance frequencies and damping rates for nanospheres. Plasmonics 11:941–951. https://doi.org/10.1007/s11468-015-0128-7

    Article  CAS  PubMed  Google Scholar 

  56. Kolwas K, Derkachova A (2020) Impact of the interband transitions in gold and silver on the dynamics of propagating and localized surface plasmons. Nanomaterials 10:1411. https://doi.org/10.3390/nano10071411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Pyykko P, Desclau JP (1979) Relativity and the periodic system of elements. Acc Chem Res 12:276–281. https://doi.org/10.1021/ar50140a002

    Article  CAS  Google Scholar 

  58. Zhao D, Feng J, Huo Q, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548. https://doi.org/10.1126/science.279.5350.548

    Article  CAS  PubMed  ADS  Google Scholar 

  59. Mondal S, Roya N, Laskara RA, Ska I, Basub S, Mandalb D, Begum NA (2011) Biogenic synthesis of Ag, Au and bimetallic Au/Ag alloy nanoparticles using aqueous extract of mahogany (Swietenia mahogani JACQ.) leaves. Colloids Surf, B 82:497–504. https://doi.org/10.1016/j.colsurfb.2010.10.007

    Article  CAS  Google Scholar 

  60. Chu S, Ren J, Yan D, Huang J, Liu J (2012) Noble metal nanodisks epitaxially formed on ZnO nanorods and their effect on Photoluminescence. Appl Phys Lett 101:043122. https://doi.org/10.1063/1.4739516

  61. Duan S, Wang R (2013) Bimetallic nanostructures with magnetic and noble metals and their physicochemical applications. Prog Nat Sci: Mater Int 23:113–126. https://doi.org/10.1016/j.pnsc.2013.02.001

  62. Zhang T, Lu G, Shen H, Shi K, Jiang Y, Xu D, Gong Q (2014) Hexagonal core-shell and alloy Au/Ag nanodisks on ZnO nanorods and their optical enhancement effect. Nanoscale Res Lett 9:237. https://doi.org/10.1186/1556-276X-9-237

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  63. Mamonova DV, Vasileva AA, Petrov YV, Koroleva AV, Danilov DV, Kolesnikov IE, Bikbaeva GI, Bachmann J, Manshina AA (2022) Single step laser-induced deposition of plasmonic Au, Ag, Pt mono-, bi- and tri-metallic nanoparticles. Nanomaterials 12:146. https://doi.org/10.3390/nano12010146

    Article  CAS  Google Scholar 

  64. Shiju E, Abhijith TB, Rao DN, Chandrasekharan K (2021) Nonlinear optical behavior of Au@Ag core- shell nanostructures. J Mol Liq 333:115935. https://doi.org/10.1016/j.molliq.2021.115935

  65. Shiju E, Siji Narendran NK, Rao ND, Chandrasekharan K (2020) enhanced nonlinear absorption and efficient power limiting action of Au/Ag@ graphite core-shell nanostructure synthesized by laser ablation. Nano Ex 1:030026. https://doi.org/10.1088/2632-959X/abca0f

  66. Zhu J (2005) Theoretical study of the optical absorption properties of Au-Ag bimetallic nanospheres. Physica E 27:296–301. https://doi.org/10.1016/j.physe.2004.12.006

    Article  CAS  ADS  Google Scholar 

  67. Philip D (2009) Biosynthesis of Au, Ag and Au-Ag nanoparticles using edible mushroom extract. Spectrochimica Acta Part A 73:374–381. https://doi.org/10.1016/j.saa.2009.02.037

    Article  CAS  ADS  Google Scholar 

  68. Lee S, Jun BH (2019) Silver nanoparticles: synthesis and application for nanomedicine. Int J Mol Sci 20:865. https://doi.org/10.3390/ijms20040865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Dorranian D, Ghamkhari SM, Mirghasemzadeh N (2013) Effect of laser pulse energy on the gold nanoparticles produced by laser ablation method. Phys, Chem Appl Nanostruct

  70. Fahes A, Naciri AE, Navvabpour M, Shoker MB, Jradi S, Akil S (2022) Anisotropic Ag@Au architectures through real-time surface-based strategy of synthesis: large-area enhanced nanosensors. Sens Bio-Sens Res 38:100528. https://doi.org/10.1016/j.sbsr.2022.100528

  71. Orendorff CJ, Sau TK, Murphy CJ (2006) Shape-dependent plasmon-resonant gold nanoparticles. Small 2:636–639. https://doi.org/10.1002/smll.200500299

    Article  CAS  PubMed  Google Scholar 

  72. Bu Y, Lee SW (2015) The characteristic Agcore/Aushell nanoparticles as SERS substrates in detecting dopamine molecules at various pH ranges. Int J Nanomed 10:47–54. https://doi.org/10.2147/IJN.S88308

    Article  CAS  Google Scholar 

  73. Pande S, Ghosh SK, Praharaj S, Panigrahi S, Basu S, Jana S, Pal A, Tsukuda T, Pal T (2007) Synthesis of normal and inverted gold-silver core-shell architectures in â-cyclodextrin and their applications in SERS. J Phys Chem C:10806–10813. https://doi.org/10.1021/jp0702393

  74. Mallin MP, Murphy CJ (2002) Solution-phase synthesis of sub-10 nm Au-Ag alloy nanoparticles. Nano Lett 2:1235–1237. https://doi.org/10.1021/nl025774n

    Article  CAS  ADS  Google Scholar 

  75. Mostafa AM, Mwafy EA, Awwad NS, Ibrahium HA (2020) Au@Ag core/shell nanoparticles prepared by laser assisted method for optical limiting applications. J Mol Struct 1222:128913. https://doi.org/10.1016/j.molstruc.2020.128913

  76. Sakthisabarimoorthi A, Jose M, Martin Britto Dhas SA, Jerome Das S (2017) Fabrication of Cu@Ag core–shell nanoparticles for nonlinear optical applications. J Mater Sci: Mater Electron 28:4545–4552. https://doi.org/10.1007/s10854-016-6090-0

    Article  CAS  Google Scholar 

  77. Sakthisabarimoorthi A, Martin Britto Dhas SA, Jose M (2017) Fabrication and nonlinear optical investigations of SiO2@Ag core-shell nanoparticles. Mater Sci Semicond Process 71:69–75. https://doi.org/10.1016/j.mssp.2017.07.008

    Article  CAS  Google Scholar 

  78. Ferreira E, Kharisov B, Vázquez A, Alvarado Méndez E, Severiano-Carrillo I, Trejo-Durán M (2019) Tuning the nonlinear optical properties of Au@Ag bimetallic nanoparticles. J Mol Liq 298:112057. https://doi.org/10.1016/j.molliq.2019.112057

  79. Ataee-Esfahani H, Wang L, Nemoto Y, Yamauchi Y (2010) Synthesis of bimetallic Au@Pt nanoparticles with Au Core and nanostructured Pt shell toward highly active electrocatalysts. Chem Mater 22:6310–6318. https://doi.org/10.1021/cm102074w

    Article  CAS  Google Scholar 

  80. Bastús NG, Piella J, Puntes VF (2016) Quantifying the sensitivity of multipolar (dipolar, quadrupolar and octapolar) surface plasmon resonances in silver nanoparticles: the effect of size, composition and surface coating. Langmuir 32:290–300. https://doi.org/10.1021/acs.langmuir.5b03859

    Article  CAS  PubMed  Google Scholar 

  81. Mahmud S, Satter SS, Singh AK, Rahman MM, Mollah MYA, Hasan Susan MAB (2019) Tailored engineering of bimetallic plasmonic Au@Ag core@shell nanoparticles. ACS Omega 4:18061–18075. https://doi.org/10.1021/acsomega.9b01897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Harada M, Kizaki S (2016) Formation mechanism of gold nanoparticles synthesized by photoreduction in aqueous ethanol solutions of polymers using in situ quick scanning X-ray absorption fine structure and small-angle x-ray scattering. Cryst Growth Des 16:1200–1212. https://doi.org/10.1021/acs.cgd.5b01168

    Article  CAS  Google Scholar 

  83. Romero I, Aizpurua J, Bryant GW, García de Abajo FJ (2006) Plasmons in nearly touching metallic nanoparticles: singular response in the limit of touching dimers. Optic express 14:9988–9999

    Article  ADS  Google Scholar 

  84. Lassiter JB, Aizpurua J, Hernandez LI, Brandl DW, Romero I, Lal S, Hafner JH, Nordlander P, Halas NJ (2008) Close encounters between two nanoshells. Nano Lett 8:1212–1218. https://doi.org/10.1021/nl080271o

    Article  CAS  PubMed  ADS  Google Scholar 

  85. Seo E, Ko SJ, Min SH, Kim JY, Kim BS (2015) Plasmonic transition via interparticle coupling of Au@Ag core-shell nanostructures sheathed in double hydrophilic block copolymer for high-performance polymer solar cell. Chem Mater 27:4789–4798. https://doi.org/10.1021/acs.chemmater.5b01591

    Article  CAS  Google Scholar 

  86. Al Aboody MS (2019) Silver/silver chloride (Ag/AgCl) nanoparticles synthesized from Azadirachta indica lalex and its antibiofilm activity against fluconazole resistant Candida tropicalis. Nanomedicine, and Biotechnology 47:2107–2113. https://doi.org/10.1080/21691401.2019.1620257

    Article  CAS  Google Scholar 

  87. Ahmadi S, Fazilati M, Mousavi SM, Nazem H (2020) Anti-bacterial/fungal and anti-cancer performance of green synthesized Ag nanoparticles using summer savory extract. J Exp Nanosci 15:363–380. https://doi.org/10.1080/17458080.2020.1799981

    Article  CAS  Google Scholar 

  88. Abed MA, A-H. Mutlak F, Ahmed AF, Nayef UM, Abdulridha SK (2021) Synthesis of Ag/Au (core/shell) nanoparticles by laser ablation in liquid and study of their toxicity on blood human components. J Phys Conf Ser 1795:012013. https://doi.org/10.1088/1742-6596/1795/1/012013

  89. Jiang Z, Li L, Huang H, He W, Ming W (2022) Progress in laser ablation and biological synthesis processes: “top-down” and “bottom-up” approaches for the green synthesis of Au/Ag nanoparticles. Int J Mol Sci 23:14658. https://doi.org/10.3390/ijms232314658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Xu X, Isik T, Kundu S, Ortalan V (2013) Investigation of laser-induced inter-welding between Au and Ag nanoparticles and the plasmonic properties of welded dimers. J Name 10:23050–23058. https://doi.org/10.1039/C8NR07718E

    Article  Google Scholar 

  91. Crewe AV, Wall J (1970) Visibility of single atoms. Science 168:1338–1340

    Article  CAS  PubMed  ADS  Google Scholar 

  92. Zhang Q, Xie J, Lee JY, Zhang J, Boothroyd C (2008) Synthesis of Ag@AgAu metal core/alloy shell bimetallic nanoparticles with tunable shell compositions by a galvanic replacement reaction. Small 4:1067–1071. https://doi.org/10.1002/smll.200701196

    Article  CAS  PubMed  Google Scholar 

  93. Pyne S, Sarkar P, Basu S, Sahoo GP (2011) Synthesis and photo physical properties of Au@Ag (core@shell) nanoparticles disperse in poly vinyl alcohol matrix. J Nanopart Res 13:1759–1767. https://doi.org/10.1007/s11051-010-9955-9

    Article  CAS  Google Scholar 

  94. Li T, Albee B, Li T, Albee B, Alemayehu M, Diaz R, Ingham L, Kamal S, Rodriguez M, Bishnoi SW (2010) Anal Bioanal Chem 398:689–700. https://doi.org/10.1007/s00216-010-3915-1

    Article  CAS  PubMed  Google Scholar 

  95. Weng Y, Li J, Ding X, Wang B, Dai S, Zhou Y, Pang R, Zhao Y, Xu H, Tian B, Hua Y (2020) Functionalized gold and silver bimetallic nanoparticles using Deinococcus radiodurans protein extract mediate degradation of toxic dye malachite green. Int J Nanomed 15:1823–1835. https://doi.org/10.2147/IJN.S236683

    Article  CAS  Google Scholar 

  96. Crespo J, Falqui A, Garc´ıa-Barrasa J, L´opez-de- Luzuriaga JM, Monge M, Olmos ME, Rodr´ıguez-Castillo M, Sestuc M, Soulantica K, (2014) Synthesis and plasmonic properties of monodisperse Au-Ag alloy nanoparticles of different compositions from a single-source organometallic precursor. J Mater Chem C 2:2975. https://doi.org/10.1039/c3tc32577f

    Article  CAS  Google Scholar 

  97. Abbasi BH, Zaka M, Hashemi SS, Khan Z (2018) Biogenic synthesis of Au, Ag and Au-Ag alloy nanoparticles using Cannabis sativa leaf extract. IET Nanobiotechnol 12:277–284. https://doi.org/10.1049/iet-nbt.2017.0169

    Article  PubMed Central  Google Scholar 

  98. Amikura K, Kimura T, Hamada M, Yokoyama N, Miyazaki J, Yamada Y (2008) Copper oxide particles produced by laser ablation in water. Appl Surf Sci 254:6976–6982. https://doi.org/10.1016/j.apsusc.2008.05.091

    Article  CAS  ADS  Google Scholar 

  99. Anjum S, Khan AK, Qamar A, Fatima N, Drouet S, Renouard S, Blondeau JP, Abbasi BH, Hano C (2021) Light tailoring: impact of UV-C irradiation on biosynthesis, physiognomies and clinical activities of Morus macroura-mediated monometallic (Ag and ZnO) and bimetallic (Ag-ZnO) nanoparticles. Int J Mol Sci 22:11294. https://doi.org/10.3390/ijms222011294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Siddiq AM, Thangam R, Madhan B, Alam MdS (2019) Counterion coupled (COCO) gemini surfactant capped Ag/Au alloy and Ag@Au core-shell nanoparticles for cancer therapy. R RSC Adv 9:37830. https://doi.org/10.1039/c9ra06494j

    Article  CAS  ADS  Google Scholar 

  101. Chen DH, Chen CJ (2002) Formation and characterization of Au-Ag bimetallic nanoparticles in water-in-oil microemulsions. J Mater Chem 12:1557–1562. https://doi.org/10.1039/b110749f

    Article  CAS  Google Scholar 

  102. Loza K, Heggen M, Epple M (2020) Synthesis, structure, properties, and applications of bimetallic nanoparticles of noble metals. Adv Funct Mater 30:1909260. https://doi.org/10.1002/adfm.201909260

    Article  CAS  Google Scholar 

  103. Çıplak Z, Gökalp C, Getiren B, Yıldız A, Yıldız N (2018) Catalytic performance of Ag, Au and Ag-Au nanoparticles synthesized by lichen extract. Green Process Synth 7:433–440. https://doi.org/10.1515/gps-2017-0074

    Article  CAS  Google Scholar 

  104. Manchala S, Nagappagari LR, Venkatakrishnan SM, Shanker V (2019) Solar-light harvesting bimetallic Ag/Au decorated graphene plasmonic system with efficient photoelectrochemical performance for the enhanced water reduction process. ACS Appl Nano mater 2:4782–4792. https://doi.org/10.1021/acsanm.9b00684

    Article  CAS  Google Scholar 

  105. Ravichandranab S, Paluria V, Kumarac G, Loganathana K, Kokati Venkata BR (2016) A novel approach for the biosynthesis of silver oxide nanoparticles using aqueous leaf extract of Callistemon lanceolatus (Myrtaceae) and their therapeutic potential. J Exp Nanosci 11:445–458. https://doi.org/10.1080/17458080.2015.1077534

    Article  CAS  Google Scholar 

  106. Gurunathan S, Han JW, Park JH, Kim E, Choi YJ, Kwon DN, Kim JH (2015) Reduced graphene oxide-silver nanoparticle nanocomposite: a potential anticancer nanotherapy. Int J Nanomed 10:6257–6276. https://doi.org/10.2147/IJN.S92449

  107. Elemike EE, Onwudiwe DC, Fayemi OE, Botha TL (2019) Green synthesis and electrochemistry of Ag, Au, and Ag-Au bimetallic nanoparticles using golden rod (Solidago canadensis) leaf extract. Appl Phys A 125:125–142. https://doi.org/10.1007/s00339-018-2348-0

    Article  CAS  Google Scholar 

  108. Zeferino RS, Barboza Flores M, Pal U (2011) Photoluminescence and Raman scattering in Ag-doped ZnO nanoparticles. J Appl Phys 109:014308. https://doi.org/10.1063/1.3530631

  109. Ziashahabi A, Prato M, Dang Z, Poursalehi R, Naseri N (2019) The effect of silver oxidation on the photocatalytic activity of Ag/ZnO hybrid plasmonic/metal-oxide nanostructures under visible light and in the dark. Scientific Report 9:11839. https://doi.org/10.1038/s41598-019-48075-7

    Article  CAS  ADS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Science and Research Branch of Islamic Azad University (SRBIAU) and above all the laser laboratory at the Plasma Physics Research Center (PPRC) for providing all the necessary facilities. We also recognize the TEM operator Mr. Hosseinpour from Khajeh Nasir University (KNU) for his meaningful guidance.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm their contribution to this document as follows: A. H. Sari devised the project, A. H. Sari presented the main conceptual ideas, A. H. Sari encouraged E. Mohebi to investigate a specific aspect of individual AgNP and Ag/Au BNP and supervised the findings of this work, D. Dorranian designed the experimental framework, D. Dorranian contributed to laser preparation, A. H. Sari and D. Dorranian verified the analytical methods, E. Mohebi worked out all of the experiment, S. AdibAmini wrote the manuscript with support from A. H. Sari and D. Dorranian, all authors contributed to the final version of the manuscript.

Corresponding author

Correspondence to Amir Hossein Sari.

Ethics declarations

Ethics Approval

There are no human and animal subjects in this article and informed consent is not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Using two synthesis methods leads to the formation of a stable structure with a variety of sizes

• All samples show a core–shell structure with different thicknesses and catalytic properties

• Every sample has a dipole mode in the VIS area, and a quadrupole mode is only found in samples with low silver concentrations

The original online version of this article was revised: The order of the authors in the author group should be corrected.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohebi, E., AdibAmini, S., Sari, A.H. et al. Formation of Agshell/Aucore Bimetallic Nanoparticles by Pulsed Laser Ablation Method: Effect of Colloidal/Solution Concentration. Plasmonics 19, 75–95 (2024). https://doi.org/10.1007/s11468-023-01976-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01976-w

Keywords

Navigation