Skip to main content
Log in

Structural and Optical Tunability of Ag-ZnO Nanocomposite Thin Films For Surface-Enhanced Raman Studies

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The Ag-ZnO nanocomposite thin films of varying Ag contents were synthesized successfully using simultaneous RF- and DC-magnetron sputterings on quartz substrates. The as-prepared nanocomposites were then annealed in a mixture of hydrogen plus argon environment (95%Ar+5%H2) at a temperature of 300 °C. The pristine and annealed films were then subjected to synchrotron XRD to study for any possible structural modifications induced in the films. The crystalline behavior of the hexagonal wurtzite structure of ZnO, in the pristine and annealed samples of Ag-ZnO nanocomposites, was evident in samples prepared at low Ag content, but with increasing Ag content, the crystalline behavior of the hexagonal wurtzite structure was suppressed. FESEM utilized to study the formation of nanoparticles in the films revealed the non-uniform distribution and agglomeration of nanoparticles increases as the Ag content increases. A broad surface plasmon region in the range of 380–450 nm was observed for different compositions with remarkable blue and red shifts using UV-visible spectroscopy. These high-quality Ag-ZnO nanocomposite thin films with tunable optical properties were then used as surface-enhanced Raman spectroscopy (SERS) substrates for the detection of rhodamine B (RhB) at low concentrations of 10−6 M. The detection of RhB in trace amounts is important in the current scenario as wastewater discharge is a serious threat to our ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

All relevant data are included in this paper.

References

  1. Amit SK, Uddin MM, Rahman R, Islam SMR, Khan MS (2017) A review on mechanisms and commercial aspects of food preservation and processing. Agric Food Secur 6(1):51. https://doi.org/10.1186/s40066-017-0130-8

    Article  Google Scholar 

  2. Fung F, Wang H, Menon S (2018) Food safety in the 21st century. Biomed J 41(2):88–95. https://doi.org/10.1016/j.bj.2018.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  3. Godfray HCJ, Beddington JR, Crute IR, Haddad L, Lawrence D, Muir JF, Pretty J, Robinson S, Thomas SM, Toulmin C (2010) Food security: the challenge of feeding 9 billion people. Science 812:2648. https://doi.org/10.1126/science.1185383

  4. Zango ZU, Jumbri K, Sambudi NS, Ramli A, Abu Bakar NH, Saad B, Rozaini MN, Isiyaka HA, Jagaba AH, Aldaghri O, Sulieman A (2020) A critical review on metal-organic frameworks and their composites as advanced materials for adsorption and photocatalytic degradation of emerging organic pollutants from wastewater. Polymers 12:1–42. https://doi.org/10.3390/polym12112648

  5. Kong H, Chen Y, Yang G, Liu B, Guo L, Wang Y, Zhou X, Wei G (2022) Two-dimensional material-based functional aerogels for treating hazards in the environment: synthesis, functional tailoring, applications, and sustainability analysis. Nanoscale Horizons 7:112–140. https://doi.org/10.1039/d1nh00633a

    Article  CAS  PubMed  Google Scholar 

  6. Arabi M, Ostovan A, Bagheri AR, Guo X, Li J, Ma J, Chen L (2020) Hydrophilic molecularly imprinted nanospheres for the extraction of rhodamine B followed by HPLC analysis: a green approach and hazardous waste elimination. Talanta 215:120933. https://doi.org/10.1016/j.talanta.2020.120933

  7. Chen X, Zhu L, Ma Z, Wang M, Zhao R, Zou Y, Fan Y (2022) Ag nanoparticles decorated ZnO nanorods as multifunctional SERS substrates for ultrasensitive detection and catalytic degradation of rhodamine B. Nanomaterials 12:2394. https://doi.org/10.3390/nano12142394

  8. Ashok E, Wang TJ, Chang YH (2022) Ultrasensitive SERS substrates based on Au nanoparticles photo-decorated on Cu2O microspheres for the detection of rhodamine B and methylene blue. Appl Surf Sci 585:152696. https://doi.org/10.1016/j.apsusc.2022.152696

  9. Huang Z, Lai Z, Zhu D, Wang H, Zhao C, Ruan G, Du F (2021) Electrospun graphene oxide/MIL-101(Fe)/ poly(acrylonitrile-co-maleic acid) nanofiber : a high-efficient and reusable integrated photocatalytic adsorbents for removal of dye pollutant from water samples. J Colloid Interface Sci 597:196–205. https://doi.org/10.1016/j.jcis.2021.04.020

    Article  CAS  PubMed  ADS  Google Scholar 

  10. Golge O, Cinpolat S, Kabak B (2020) Quantification of pesticide residues in gherkins by liquid and gas chromatography coupled to tandem mass spectrometry. J Food Compos Anal 96:103755. https://doi.org/10.1016/j.jfca.2020.103755

  11. Samsidar A, Siddiquee S, Shaarani SM (2018) A review of extraction, analytical and advanced methods for determination of pesticides in environment and foodstuffs. Trends Food Sci Technol 71:188–201. https://doi.org/10.1016/j.tifs.2017.11.011

    Article  CAS  Google Scholar 

  12. Dash P, Sahoo PK, Solanki V, Singh UB, Avasthi DK, Mishra NC (2015) Study of thickness dependent sputtering in gold thin films by swift heavy ion irradiation. Nucl Inst Meth Phys Sec B 365:496–502. https://doi.org/10.1016/j.nimb.2015.08.061

    Article  CAS  ADS  Google Scholar 

  13. MD Acunto (2019) In situ surface-enhanced Raman spectroscopy of cellular components: theory and experimental results. Materials (Basel) 12:1564. https://doi.org/10.3390/ma12091564

    Article  CAS  Google Scholar 

  14. Hang Y, Boryczka J, Wu N (2022) Visible-light and near-infrared fluorescence and surface-enhanced Raman scattering point-of-care sensing and bio-imaging: a review. Chem Soc Rev 51:329–375. https://doi.org/10.1039/c9cs00621d

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yang C, Liang P, Tang L, Zhou Y, Cao Y, Wu Y, Zhang D, Dong Q, Huang J, He P (2018) Synergistic effects of semiconductor substrate and noble metal nano-particles on SERS effect both theoretical and experimental aspects. Appl Surf Sci 436:367–372. https://doi.org/10.1016/j.apsusc.2017.12.074

  16. Sharma H, Agarwal DC, Shukla AK, Avasthi DK, Vankar VD (2023) Surface-enhanced Raman scattering and fluorescence emission of gold nanoparticle – multiwalled carbon nanotube hybrids. J Raman Spectrosc 44:12–20. https://doi.org/10.1002/jrs.4136

    Article  CAS  ADS  Google Scholar 

  17. Motla A, Nisar S, Baranwal V, Sharma K, Sundarawel B, Shrama ND, Khan SA, Avasthi DK (2021) Ion beam synthesis of SERS substrate. In: 2021 International Conference on Electrical Engineering and Photonics (EExPolytech), St. Petersburg, Russian Federation. pp 213–216. https://doi.org/10.1109/EExPolytech53083.2021.9614915

  18. Singhal R, Agarwal DC, Mohapatra S, Mishra YK, Kabiraj D, Singh F, Avasthi DK, Chawla AK, Chandra R, Mattei G, Pivin JC (2008) Synthesis and characterizations of silver-fullerene C70 nanocomposite. Appl Phys Lett 93:103114. https://doi.org/10.1063/1.2976674

  19. Cao Y, Zhang J, Yang Y, Huang Z, Long NV, Fu C (2015) Engineering of SERS substrates based on noble metal nanomaterials for chemical and biomedical applications. Appl Spectr Rev 50:37–41. https://doi.org/10.1080/05704928.2014.923901

    Article  CAS  Google Scholar 

  20. Cao Y, Li D, Jiang F, Yang Y, Huang Z (2013) Engineering metal nanostructure for SERS application. J Nanomater 2013. https://doi.org/10.1155/2013/123812

  21. Gentile A, Ruffino F, Grimaldi MG (2016) Complex-morphology metal-based nanostructures: fabrication, characterization, and applications. Nanomaterials 6:110. https://doi.org/10.3390/nano6060110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Borges J, Ferreira CG, Fernandes JP, Rodrigues MS, Proença M, Apreutesei M, Alves E, Barradas NP, Moura C, Vaz F (2018) Thin films of Ag–Au nanoparticles dispersed in TiO2: influence of composition and microstructure on the LSPR and SERS responses. J Phys D Appl Phys 51:205102. https://doi.org/10.1088/1361-6463/aabc49

  23. Jeanmaire DL, Van Duyne RP (1976) Resonance Raman spectroelectrochemistry: V. Intensity transients on the millisecond time scale following double potential step initiation of a diffusion controlled electrode reaction. J Electroanal Chem 66:235–247. https://doi.org/10.1016/S0022-0728(75)80006-4

    Article  Google Scholar 

  24. Hendra P (2016) The discovery of SERS: an idiosyncratic account from a vibrational spectroscopist. Analyst 141:4996–4999. https://doi.org/10.1039/c6an90055k

    Article  CAS  PubMed  ADS  Google Scholar 

  25. Mcquillan AJ (2009) The discovery of surface-enhanced Raman scattering. Notes Rec R Soc 63:105–109. https://doi.org/10.1098/rsnr.2008.0032

    Article  Google Scholar 

  26. De Oliveira PFM, Torresi RM, Camargo PHC (2020) Challenges and opportunities in the bottom-up mechanochemical synthesis of noble metal nanoparticles. J Mater Chem A 8:16114–16141. https://doi.org/10.1039/d0ta05183g

    Article  CAS  Google Scholar 

  27. Iqbal M, Bando Y, Sun Z, Wu KC, Rowan AE, Na J, Guan BY, Yamauchi Y (2021) In search of excellence: convex versus concave noble metal nanostructures for electrocatalytic applications. Adv Mater 33:2004554. https://doi.org/10.1002/adma.202004554

    Article  CAS  Google Scholar 

  28. Li Z, Huang X, Lu G (2020) Recent developments of flexible and transparent SERS substrates. J Mater Chem C 8:3956–3969. https://doi.org/10.1039/d0tc00002g

    Article  CAS  Google Scholar 

  29. Wu HY, Lin HC, Liu YH, Chen KL, Wang YH, Sun YS, Hsu JC (2022) Highly sensitive, robust, and recyclable TiO2/AgNP substrate for SERS detection. Molecules 27:6755. https://doi.org/10.3390/molecules27196755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Huang S, Wu C, Wang Y, Yang X, Yuan R, Chai Y (2021) Chemical Ag/TiO2 nanocomposites as a novel SERS substrate for construction of sensitive biosensor. Sens Actuators B Chem 339:129843. https://doi.org/10.1016/j.snb.2021.129843

  31. Kuriakose S, Sahu K, Khan SA, Tripathi A, Avasthi DK, Mohapatra S (2017) Facile synthesis of Au-ZnO plasmonic nanohybrids for highly efficient photocatalytic degradation of methylene blue. Opt Mater (Amst) 64:47–52. https://doi.org/10.1016/j.optmat.2016.11.035

    Article  CAS  ADS  Google Scholar 

  32. Shaik UP, Hamad S, Ahamad Mohiddon M, Soma VR, Ghanashyam Krishna M (2016) Morphologically manipulated Ag/ZnO nanostructures as surface enhanced Raman scattering probes for explosives detection. J Appl Phys 119:9. https://doi.org/10.1063/1.4943034

  33. Mayer KM, Hafner JH (2011) Localized surface plasmon resonance sensors. Chem Rev 111:3828–3857. https://doi.org/10.1021/cr100313v

    Article  CAS  PubMed  Google Scholar 

  34. Qi Y, Hu Y, Xie M, Xing D, Gu G (2011) Adsorption of aniline on silver mirror studied by surface-enhanced Raman scattering spectroscopy and density functional theory calculations. J Raman Spectrosc 42:1287–1293. https://doi.org/10.1002/jrs.2864

    Article  CAS  ADS  Google Scholar 

  35. Wang X, Shi W, She G, Mu L (2011) Using Si and Ge nanostructures as substrates for surface-enhanced Raman scattering based on photoinduced charge transfer mechanism. J Am Chem Soc 133:16518–16523. https://doi.org/10.1021/ja2057874

    Article  CAS  PubMed  Google Scholar 

  36. Magdy M (2023) A conceptual overview of surface-enhanced Raman scattering (SERS). Plasmonics 18:803–809. https://doi.org/10.1007/s11468-023-01807-y

    Article  CAS  Google Scholar 

  37. Liu Y, Ma H, Han XX, Zhao B (2021) Metal–semiconductor heterostructures for surface-enhanced Raman scattering: synergistic contribution of plasmons and charge transfer. Mater Horiz 8:370–382. https://doi.org/10.1039/d0mh01356k

    Article  CAS  PubMed  ADS  Google Scholar 

  38. Sahoo DP, Patnaik S, Rath D, Parida KM (2018) Synergistic effects of plasmon induced Ag@Ag3VO4/ZnCr LDH ternary heterostructures towards visible light responsive O2 evolution and phenol oxidation reactions. Inorg Chem Front 5:879–896. https://doi.org/10.1039/c7qi00742f

    Article  CAS  Google Scholar 

  39. Singh UB, Gautam SK, Kumar S, Hooda S, Ojha S, Singh F (2016) Ion beam induced optical and surface modification in plasmonic nanostructures. Nucl Inst Methods Phys Res B 379:42–47. https://doi.org/10.1016/j.nimb.2016.04.005

    Article  CAS  ADS  Google Scholar 

  40. Coleman VA, Jagadish C (2006) Basic properties and applications of ZnO. In: Zinc Oxide Bulk, Thin Films and Nanostructures. pp 1–20. https://doi.org/10.1016/B978-008044722-3/50001-4

  41. Han B, Guo S, Jin S, Park E, Xue X, Chen L, Jung YM (2020) Improved charge transfer contribution by cosputtering Ag and ZnO. Nanomaterials (Basel) 10:1–10. https://doi.org/10.3390/nano10081455

  42. Choudhary S, Vashisht G, Malik R, Dong CL, Chen CL, Kandasami A, Annapoorni S (2021) Photo generated charge transport studies of photo generated charge transport studies of defects-induced shuttlecock-shaped ZnO/Ag hybrid nanostructures. Nanotechnology 32:305708. https://doi.org/10.1088/1361-6528/abf87c

  43. Avasthi DK, Mishra YK, Kabiraj D, Lalla NP, Pivin JC (2007) Synthesis of metal–polymer nanocomposite for optical applications. Nanotechnology 18:125604. https://doi.org/10.1088/0957-4484/18/12/125604

  44. Mishra YK, Adelung R, Kumar G, Elbahri M, Mohapatra S, Singhal R, Tripathi A, Avasthi DK (2013) Formation of self-organized silver nanocup-type structures and their plasmonic absorption. Plasmonics 8:811–815. https://doi.org/10.1007/s11468-013-9477-2

    Article  CAS  Google Scholar 

  45. Sun CH, Wang ML, Feng Q, Liu W, Xu CX (2015) Surface enhanced Raman scattering (SERS) study on Rhodamine B adsorbed on different substrates 1. Russ J Phys Chem A 89(2):291–296. https://doi.org/10.1134/S0036024415020338

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Amit Kumar Chawla and Akula Umamaheswara Rao at C.I.C UPES for their time and assistance during the Ag-ZnO deposition. One of the authors, AM, wishes to thank CSIR, New Delhi, for providing fellowship. The authors extend their thanks to the Institute of Eminence, IoE 2021-22, project no. IOE/2021/12/FRP, University of Delhi, the University Science Instrumentation Center (USIC), University of Delhi, for the FESEM facility and the National Synchrotron Radiation Research Center, NSSRC, Hsinchu, Taiwan, for the synchrotron XRD facility.

Funding

The TEEP Asia Plus program and Taiwan’s MoST project grant 110-2112-M-032-013-MY3 are acknowledged by the authors for the financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

Akanksha Motla, Devesh Kumar Avasthi, and S. Annapoorni participated in the study’s conception and design. Akanksha Motla conducted the material preparation. Data collection was carried out by Akanksha Motla and Thanigai Arul. Analysis was performed by Akanksha Motla, K. Asokan, Chung-Li Dong, S. Annapoorni, and Devesh Kumar Avasthi. Akanksha Motla wrote the initial draft of the manuscript. S. Annapoorni and all authors provided feedback on earlier versions. The final manuscript was reviewed and approved by all authors.

Corresponding authors

Correspondence to Devesh Kumar Avasthi or S. Annapoorni.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Motla, A., Kumaravelu, T., Dong, CL. et al. Structural and Optical Tunability of Ag-ZnO Nanocomposite Thin Films For Surface-Enhanced Raman Studies. Plasmonics 19, 335–345 (2024). https://doi.org/10.1007/s11468-023-01965-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01965-z

Keywords

Navigation