Skip to main content
Log in

Analysis of Dielectric Properties of Inhomogeneous Anisotropic Dye-Coated Nanoparticles

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, the effective permittivity of inhomogeneous anisotropic dye-coated nanoparticles is calculated and compared using the internal homogenization method and the electric field-weighted averaging method. The relative errors of the two effective medium methods are analyzed by comparing the calculated absorption factors with those calculated by the original model. The filling factor, core size, material, and anisotropy degree of the dye molecular layer are considered, and the results showed good agreement for larger filling factor, smaller core radius, and radial dielectric constant of the shell. The highest reliability of the effective permittivity predicted by the two methods is achieved when the filling factor, core radius, and radial dielectric constant are 0.8, 15 nm, and 4, respectively. In general, the accuracy of the homogenization method within the studied wave band is higher than that of the electric field-weighted averaging method, but the electric field-weighted averaging method can be applied to anisotropic medium with arbitrary morphology, which provides a new idea for calculating the dielectric properties of inhomogeneous anisotropic medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The datasets analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aylo R, Nehmetallah G, Li H, Banerjee PP (2014) Multilayer periodic and random metamaterial structures: analysis and applications. IEEE Access 2:437–450

    Article  Google Scholar 

  2. Smith DR, Kroll N (2000) Negative refractive index in left-handed materials. Phys Rev Lett 85:2933

    Article  CAS  PubMed  ADS  Google Scholar 

  3. Lu D, Kan JJ, Fullerton EE, Liu Z (2014) Enhancing spontaneous emission rates of molecules using nanopatterned multilayer hyperbolic metamaterials. Nat Nanotechnol 9:48–53

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Jacob Z, Alekseyev LV, Narimanov E (2006) Optical hyperlens: far-field imaging beyond the diffraction limit. Opt Express 14:8247–8256

    Article  PubMed  ADS  Google Scholar 

  5. Elser J, Podolskiy VA (2008) Scattering-free plasmonic optics with anisotropic metamaterials. Phys Rev Lett 100:066402

    Article  PubMed  ADS  Google Scholar 

  6. Jia X, Yan M, Hong M (2021) Sound energy enhancement via impedance-matched anisotropic metamaterial. Mater Des 197:109254

    Article  Google Scholar 

  7. Gnawali R, Banerjee PP, Haus JW, Reshetnyak V, Evans DR (2018) Optical propagation through anisotropic metamaterials: application to metallo-dielectric stacks. Opt Commun 425:71–79

    Article  CAS  ADS  Google Scholar 

  8. Zhang W, Song Q, Zhu W, Shen Z, Chong P, Tsai DP, Qiu C, Liu AQ (2018) Metafluidic metamaterial: a review. Adv Phys X 3:1417055

    ADS  Google Scholar 

  9. Chen X, Zhao C, Wang B (2018) Microstructural effect on radiative scattering coefficient and asymmetry factor of anisotropic thermal barrier coatings. J Quant Spectrosc Radiat Transfer 210:116–126

    Article  CAS  ADS  Google Scholar 

  10. Anand P, Thomas SG, Kunnumakkara AB, Sundaram C, Harikumar KB, Sung B, Tharakan ST, Misra K, Priyadarsini IK, Rajasekharan KN (2008) Biological activities of curcumin and its analogues (Congeners) made by man and Mother Nature. Biochem Pharmacol 76:1590–1611

    Article  CAS  PubMed  Google Scholar 

  11. Altunbas A, Lee SJ, Rajasekaran SA, Schneider JP, Pochan DJ (2011) Encapsulation of curcumin in self-assembling peptide hydrogels as injectable drug delivery vehicles. Biomaterials 32:5906–5914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lebedev VS, Medvedev AS, Vasil’ev D, Chubich DAe, Vitukhnovsky AG, (2010) Optical properties of noble-metal nanoparticles coated with a dye J-aggregate monolayer. Quantum Electron 40:246

    Article  CAS  ADS  Google Scholar 

  13. Shen P, Palais JC, Lin C (1998) Fiber recirculating delay-line tunable depolarizer. Appl Opt 37:443–448

    Article  CAS  PubMed  ADS  Google Scholar 

  14. Tang C, Auguié B, Le Ru EC (2022) Effect of molecular position and orientation on adsorbate-induced shifts of plasmon resonances. J Phys Chem C 126:10129–10138

    Article  CAS  Google Scholar 

  15. Lim J, Lee M, Balasingam SK, Kim J, Kim D, Jun Y (2013) Fabrication of panchromatic dye-sensitized solar cells using pre-dye coated TiO2 nanoparticles by a simple dip coating technique. RSC Adv 3:4801–4805

    Article  CAS  ADS  Google Scholar 

  16. Kometani N, Tsubonishi M, Fujita T, Asami K, Yonezawa Y (2001) Preparation and optical absorption spectra of dye-coated Au, Ag, and Au/Ag colloidal nanoparticles in aqueous solutions and in alternate assemblies. Langmuir 17:578–580

    Article  CAS  Google Scholar 

  17. Alù A, Engheta N (2005) Achieving transparency with plasmonic and metamaterial coatings. Phys Rev E 72:016623

    Article  ADS  Google Scholar 

  18. Ullah S, Naqvi QA, Syed AA, Baqir MA (2021) Perfect cloaking by shell with radially inhomogeneous chiral medium. Optik 241:167038

    Article  CAS  ADS  Google Scholar 

  19. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields science 312:1780–1782

    CAS  PubMed  Google Scholar 

  20. Yan W, Yan M, Ruan Z, Qiu M (2008) Influence of geometrical perturbation at inner boundaries of invisibility cloaks. JOSA A 25:968–973

    Article  PubMed  ADS  Google Scholar 

  21. Nayak JK, Roy Chaudhuri P, Ratha S, Sahoo MR (2023) A comprehensive review on effective medium theories to find effective dielectric constant of composites. J Electromagn Waves Appl 37:282–322

    Article  ADS  Google Scholar 

  22. Zhang X, Wu Y (2015) Effective medium theory for anisotropic metamaterials. Sci Rep 5:1–7

    Google Scholar 

  23. Batool S, Nisar M, Frezza F, Mangini F (2020) Cloaking using the anisotropic multilayer sphere. Photonics MDPI, pp. 52

  24. Qiu C-W, Novitsky A, Ma H, Qu S (2009) Electromagnetic interaction of arbitrary radial-dependent anisotropic spheres and improved invisibility for nonlinear-transformation-based cloaks. Phys Rev E 80:016604

    Article  ADS  Google Scholar 

  25. Reshetnyak VY, Pinkevych IP, Sluckin TJ, Evans DR (2016) Cloaking by shells with radially inhomogeneous anisotropic permittivity. Opt Express 24:A21–A32

    Article  PubMed  ADS  Google Scholar 

  26. Tang C, Auguié B, Le Ru EC (2021) Refined effective-medium model for the optical properties of nanoparticles coated with anisotropic molecules. Phys Rev B 103:085436

    Article  CAS  ADS  Google Scholar 

  27. Moroz A (2008) Electron mean free path in a spherical shell geometry. J Phys Chem C 112:10641–10652

    Article  CAS  Google Scholar 

  28. Coronado EA, Schatz GC (2003) Surface plasmon broadening for arbitrary shape nanoparticles: a geometrical probability approach. J Chem Phys 119:3926–3934

    Article  CAS  ADS  Google Scholar 

  29. Johnson PB, Christy R-W (1972) Optical constants of the noble metals. Phys Rev B 6:4370

    Article  CAS  ADS  Google Scholar 

  30. Rakić AD (1995) Algorithm for the determination of intrinsic optical constants of metal films: application to aluminum. Appl Opt 34:4755–4767

    Article  PubMed  ADS  Google Scholar 

  31. Rakić AD, Djurišić AB, Elazar JM, Majewski ML (1998) Optical properties of metallic films for vertical-cavity optoelectronic devices. Appl Opt 37:5271–5283

    Article  PubMed  ADS  Google Scholar 

  32. Ashcroft N, Mermin N (1976) Solid state physics, Holt. Rinehart and Winston New York 2005:403

    Google Scholar 

  33. Kettunen H, Wallén H, Sihvola AJJoAP (2013) Cloaking and magnifying using radial anisotropy114

  34. Reshetnyak VY, Pinkevych I, Sluckin T, Urbas A, Evans D (2018) Effective medium theory for anisotropic media with plasmonic core-shell nanoparticle inclusions. Eur Phys J Plus 133:373

    Article  ADS  Google Scholar 

  35. Sudiarta IW (2004) Effective medium approximations for light scattering by heterogeneous particles

  36. Smith DR, Schultz S, Markoš P, Soukoulis C (2002) Determination of effective permittivity and permeability of metamaterials from reflection and transmission coefficients. Phys Rev B 65:195104

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by Natural Science Foundation of China (Grant numbers 51476078).

Author information

Authors and Affiliations

Authors

Contributions

Cong Sun: methodology, simulation, and writing—original draft. Li Jiayu: conceptualization, methodology, analysis, and writing—review.

Corresponding author

Correspondence to Jiayu Li.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, C., Li, J. Analysis of Dielectric Properties of Inhomogeneous Anisotropic Dye-Coated Nanoparticles. Plasmonics 19, 287–300 (2024). https://doi.org/10.1007/s11468-023-01964-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01964-0

Keywords

Navigation