Skip to main content
Log in

Hybrid MoS2-Plamonic Absorber Covering the Whole Visible Spectrum: Application to Design Transistor Like Photodetectors

  • Research
  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 09 September 2023

This article has been updated

Abstract

In this article, a novel MoS2 based wideband absorber is proposed that covers the whole visible spectrum. The structure is composed of a single MoS2 layer on top of a Si/SiO2 distributed Bragg reflector. Coupled Au Nanospheres are utilized on top of the MoS2 layer that broaden the absorption spectrum as a result of the coupling between the plasmonic modes of individual particles. By optimizing the geometrical features of the plasmonic Nano-antennas, a high absorption value reaching more than 80% in the range of 400–600 nm is obtained which decreases to 50% at 700 nm. The application of the proposed structure in designing a wideband visible light photodetector is discussed either.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

Not applicable.

Change history

References

  1. Yin Z et al (2012) Single-layer MoS2 phototransistors. ACS Nano 6(1):74–80. https://doi.org/10.1021/nn2024557

    Article  PubMed  Google Scholar 

  2. Choi W et al (2012) High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24(43):5832–5836. https://doi.org/10.1002/adma.201201909

    Article  CAS  PubMed  Google Scholar 

  3. Furchi MM et al (2014) Mechanisms of photoconductivity in atomically thin MoS2. Nano Lett 14(11):6165–6170. https://doi.org/10.1021/nl502339q

    Article  CAS  PubMed  ADS  Google Scholar 

  4. Lopez-Sanchez O et al (2013) Ultrasensitive photodetectors based on monolayer MoS 2. Nat Nanotechnol 8(7):497–501. https://doi.org/10.1038/NNANO.2013.100

    Article  CAS  PubMed  ADS  Google Scholar 

  5. Thakar K, Lodha S (2020) Optoelectronic and photonic devices based on transition metal dichalcogenides. Mater Res Express 7(1):014002. https://doi.org/10.1088/2053-1591/ab5c9c

    Article  CAS  ADS  Google Scholar 

  6. Li H et al (2015) Emerging energy applications of two-dimensional layered transition metal dichalcogenides. Nano Energy 18:293–305. https://doi.org/10.1016/j.nanoen.2015.10.023

    Article  CAS  ADS  Google Scholar 

  7. Schwierz F, Pezoldt J, Granzner R (2015) Two-dimensional materials and their prospects in transistor electronics. Nanoscale 7(18):8261–8283. https://doi.org/10.1039/C5NR01052G

    Article  CAS  PubMed  ADS  Google Scholar 

  8. Wang QH et al (2012) Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat Nanotechnol 7(11):699–712. https://doi.org/10.1038/NNANO.2012.193

    Article  CAS  PubMed  ADS  Google Scholar 

  9. Ponraj JS et al (2016) Photonics and optoelectronics of two-dimensional materials beyond graphene. Nanotechnology 27(46):462001. https://doi.org/10.1088/0957-4484/27/46/462001

    Article  CAS  PubMed  Google Scholar 

  10. Yun WS et al (2012) Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-M X 2 semiconductors (M = Mo, W; X = S, Se, Te). Phys Rev B 85(3):033305. https://doi.org/10.1103/PhysRevB.85.033305

    Article  CAS  ADS  Google Scholar 

  11. Novoselov KS et al (2005) Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences 102(30):10451–10453. https://doi.org/10.1073/pnas.0502848102

  12. Ullah MS et al (2018) Analysis of optical and electronic properties of MoS2 for optoelectronics and FET applications. AIP Conf Proc 1957:020001. https://doi.org/10.1063/1.5034320

    Article  CAS  Google Scholar 

  13. Guo J et al (2019) Near-infrared photodetector based on few-layer MoS2 with sensitivity enhanced by localized surface plasmon resonance. Appl Surf Sci 483:1037–1043. https://doi.org/10.1016/j.apsusc.2019.04.044

    Article  CAS  ADS  Google Scholar 

  14. Ye L et al (2016) Near-infrared photodetector based on MoS2/black phosphorus heterojunction. Acs Photonics 3(4):692–699. https://doi.org/10.1021/acsphotonics.6b00079

    Article  CAS  Google Scholar 

  15. Hao E, Schatz GC, Hupp JT (2004) Synthesis and optical properties of anisotropic metal nanoparticles. J Fluoresc 14(4):331–341. https://doi.org/10.1023/b:jofl.0000031815.71450.74

    Article  CAS  PubMed  Google Scholar 

  16. Zhou K et al (2019) Plasmon-enhanced broadband absorption of MoS 2-based structure using au nanoparticles. Opt Express 27(3):2305–2316. https://doi.org/10.1364/OE.27.002305

    Article  CAS  PubMed  ADS  Google Scholar 

  17. Cao J et al (2017) Enhancement of broad-band light absorption in monolayer MoS2 using Ag grating hybrid with distributed Bragg reflector. Superlattices Microstruct 110:26–30. https://doi.org/10.1016/j.spmi.2017.09.008

    Article  CAS  ADS  Google Scholar 

Download references

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Mina Tavakkoli, Hadi Soofi and Vahid Sheibaei have contributed equally.

Corresponding author

Correspondence to Mina Tavakkoli.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethical Approval

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: The affiliation of authors ? “Mina Tavakkoli” and “Hadi Soofi” should be corrected with the following: “Faculty of Electrical and Computer Engineering, University of Tabriz, Tabriz, Iran”.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakkoli, M., Soofi, H. & Sheibaei, V. Hybrid MoS2-Plamonic Absorber Covering the Whole Visible Spectrum: Application to Design Transistor Like Photodetectors. Plasmonics 19, 59–64 (2024). https://doi.org/10.1007/s11468-023-01958-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01958-y

Keywords

Navigation