Skip to main content
Log in

Flexible Polarization Manipulation Using Multi-band and Wide-angle Multi-function Reflective Polarization Metasurface for Terahertz Regime

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this paper, a metasurface-based reflective polarization converter for multi-band multi-functional polarization conversion with high-efficiency and wide-angle in the terahertz region is presented. The proposed metasurface cell is formed by a hybrid resonator composed of a modified double V and a stepped cut-wire, and a single-layer polyimide backed with gold. In the frequency band of 0.7–1.1 THz and 1.72–1.92THz, a linearly y-/x-polarized (LP) incident EM wave is converted into its cross-polarized direction with a polarization conversion ratio greater than 0.9 (PCR > 0.9). Also, in the frequency band of 1.05–1.71THz, an LP incident EM wave is converted into a circularly polarized reflective wave with an axial ratio (AR) less than 3 dB (AR < 3 dB). The multi-functional polarization conversion performance stays stable even though the incident angle up to \(40^\circ\). The numerical calculations, and physical insight analysis using surface currents distributions are studied. The results demonstrate that the proposed converter provides a new and efficient method to design high-efficient, incident angle insensitive, multi-band polarization converter for multiple polarization conversion in the terahertz frequency bands. The design can find potential applications in multi-band and multi-polarization THz communication, imaging, and sensing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Availability of Data and Materials

Contact the corresponding author.

References

  1. Ferguson B, Zhang X-C (2002) Materials for terahertz science and technology. Nature Mater 1:26–33

    Article  CAS  Google Scholar 

  2. Abohmra A, Abbas H, AI-Hasan M et al (2020) Terahertz antenna array based on a hybrid perovskite structure. IEEE Open J Antennas Propag 1:464–471

    Article  Google Scholar 

  3. Zhao S, Wang J, Jiang H et al (2023) Implementing the dual functions of switchable broadband absorption and sensitive sensing in a VO2-based metasurface. Plasmonics. https://doi.org/10.1007/s11468-023-01912

    Article  Google Scholar 

  4. Sharma G, Lakhtakia A, Bhattacharyya S, Jain PK (2020) Magnetically tunable metasurface comprising InAs and InSb pixels for absorbing terahertz radiation. Appl Opt 59:9673–9680

    Article  CAS  PubMed  Google Scholar 

  5. Appasani B (2022) A hybrid terahertz metamaterial sensor using a hexagonal ring resonator with bio-medical applications. Plasmonics 17(2):519–524

    Article  CAS  Google Scholar 

  6. Bilal RMH, Baqir MA, Choudhury PK et al (2020) On the specially designed fractal metasurface-based dual-polarization converter in the THz regime. Res Phys 19103358

  7. Ghosh SK, Chaudhuri A, Pal P et al (2022) A broadband biosensor using graphene-metasurface based cross-polarization converter. IEEE Sens J 22(13):12820–12828

    Article  CAS  Google Scholar 

  8. Jia R, Gao Y, Xu Q et al (2021) Achromatic dielectric metasurface with linear phase gradient in the terahertz domain. Adv Opt Mater 9:2001403

    Article  CAS  Google Scholar 

  9. Yuan Y, Sun S, Chen Y et al (2020) A fully phase-modulated metasurface as an energy-controllable circular polarization router. Adv Sci 72001437

  10. Chen H-T, Taylor AJ, Yu N (2016) A review of metasurfaces: physics and applications. Rep Prog Phys 79

    Article  PubMed  Google Scholar 

  11. Muthukrishnan K, Narasimhan V (2021) Multiband terahertz metamaterial absorber based on multipolar plasmonic resonances. Plasmonics 16(4):1049–1057

    Article  CAS  Google Scholar 

  12. Jiang SC, Xiong X, Hu YS, Hu YH et al (2014) Controlling the polarization state of light with a dispersion-free metastructure. Phys Rev X 4(2)

    Google Scholar 

  13. Li Y, Zhang J, Qu S et al (2015) Achieving wide-band linear-to-circular polarization conversion using ultra-thin bi-layered metasurfaces. J Appl Phys 117

    Article  Google Scholar 

  14. Ako RT, Lee WSL, Atakaramians S et al (2020) Ultra-wideband tri-layer transmissive linear polarization converter for terahertz waves. Apl Photonics 5

    Article  CAS  Google Scholar 

  15. Grady NK, Heyes JE, Chowdhury DR et al (2013) Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340:1304–1307

    Article  CAS  PubMed  Google Scholar 

  16. Yu N, Genevet P, Kats MA et al (2011) Light propagation with phase discontinuities: generalized laws of reflection and refraction. Science 334:333–337

    Article  CAS  PubMed  Google Scholar 

  17. Chen Q, Zhang H (2018) Dual-patch polarization conversion metasurface-based wideband circular polarization slot antenna. IEEE Access 6:74772–74777

    Article  Google Scholar 

  18. Zheng Q, Guo C, Ding J et al (2021) A Broadband low-RCS metasurface for CP patch antennas, IEEE Trans. Antenn Propag 69:3529–3534

    Article  Google Scholar 

  19. Wei J, Qi Y, Zhang B et al (2022) Research on beam manipulate and RCS reduction based on terahertz ultra-wideband polarization conversion metasurface. Opt Commun 502:127425

    Article  CAS  Google Scholar 

  20. Zhang L, Zhou P, Lu H et al (2015) Ultra-thin reflective metamaterial polarization rotator based on multiple plasmon resonances. IEEE Antenn Wirel Pr 14:1157–1160

    Article  Google Scholar 

  21. Xu J, Li R, Qin J et al (2018) Ultra-broadband wide-angle linear polarization converter based on H-shaped metasurface. Opt Express 26:20913–20919

    Article  CAS  PubMed  Google Scholar 

  22. Zheng Q, Guo C, Vandenbosch GAE et al (2019) Ultra-broadband and high-efficiency reflective polarization rotator based on fractal metasurface with multiple plasmon resonances. Opt Commun 449:73–78

    Article  CAS  Google Scholar 

  23. Xia R, Jing X, Gui X et al (2017) Broadband terahertz half-wave plate based on anisotropic polarization conversion metamaterials. Opt Mater Express 7:977–988

    Article  Google Scholar 

  24. Yin B, Ma Y (2021) Broadband terahertz polarization converter with anomalous reflection based on phase gradient metasurface. Opt Commun 493

    Article  CAS  Google Scholar 

  25. Lu T, Qiu P, Lian J et al (2019) Ultrathin and broadband highly efficient terahertz reflective polarization converter based on four L-shaped metamaterials. Opt Mater 95:109230

    Article  CAS  Google Scholar 

  26. Zhao J, Cheng Y, Cheng Z (2018) Design of a photo-excited switchable broadband reflective linear polarization conversion metasurface for Terahertz waves. IEEE Photonics J 10:1–10

    Google Scholar 

  27. Yadav VS, Ghosh SK, Bhattacharyya S, Das S (2018) Graphene-based metasurface for a tunable broadband terahertz cross-polarization converter over a wide angle of incidence. Appl Opt 57:8720–8726

    Article  CAS  PubMed  Google Scholar 

  28. Sarkar R, Punjal A, Prabhu SS, Kumar G (2022) Broad-band terahertz polarization conversion in a planar metasurface, 2022 Workshop on Recent Advances in Photonics (WRAP). Mumbai, India, pp 1–2

    Book  Google Scholar 

  29. Ma HF, Wang GZ, Kong GS et al (2014) Broadband circular and linear polarization conversions realized by thin birefringent reflective metasurfaces. Opt Mater Express 4:1717–1724

    Article  Google Scholar 

  30. Jia Y, Liu Y, Zhang W et al (2018) Ultra-wideband metasurface with linear-to-circular polarization conversion of an electromagnetic wave. Opt Mater Express 8:597–604

    Article  CAS  Google Scholar 

  31. Jiang Y, Wang L, Wang J et al (2017) Ultra-wideband high-efficiency reflective linear-to-circular polarization converter based on metasurface at terahertz frequencies. Opt Express 25:27616–27623

    Article  PubMed  Google Scholar 

  32. Quader S, Zhang J, Akram MR et al (2020) Graphene-based high-efficiency broadband tunable linear-to-circular polarization converter for terahertz waves. IEEE J Sel Top Quantum Electron 26(5):1–8

    Article  Google Scholar 

  33. Nguyen TKT, Nguyen TM, Nguyen HQ et al (2021) Simple design of efficient broadband multifunctional polarization converter for X-band applications. Sci Rep-Uk 11:1–12

    Google Scholar 

  34. Huang J, Fu T, Li H et al (2020) A reconfigurable terahertz polarization converter based on metal–graphene hybrid metasurface. Chin Opt Lett 18(1)

    Article  Google Scholar 

  35. Barkabian M, Sharifi N, Granpayeh N (2021) Multi-functional high-efficiency reflective polarization converter based on an ultra-thin graphene metasurface in the THz band. Opt Express 29:20160–20174

    Article  CAS  PubMed  Google Scholar 

  36. Zhang H, Liu Y, Liu Z et al (2021) Multi-functional polarization conversion manipulation via graphene-based metasurface reflectors. Opt Express 29(1):70–81

    Article  CAS  PubMed  Google Scholar 

  37. Ghosh SK, Das S, Bhattacharyya S (2022) Terahertz wave conversion from linear to circular polarization by graphene metasurface featuring ultrawideband tunability. J Lightwave Technol 40(20):6676–6684

    Article  CAS  Google Scholar 

  38. Ordal MA, Long LL, Bell RJ et al (1983) Optical properties of the metals Al Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far-infrared. Appl Opt 22:1099–1119

    Article  CAS  PubMed  Google Scholar 

  39. CST Studio Suite (2020) https://www.3ds.com/products-services/simulia/products/cst-studio-suite/solvers/

Download references

Author information

Authors and Affiliations

Authors

Contributions

Qi Zheng and Jingjing Qi worked on the theoretical analysis, structure design, simulations, discussions, and wrote the main manuscript. Peyman PourMohammadi also worked on the writing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Qi Zheng.

Ethics declarations

Ethics Approval

No applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, Q., Qi, J. & PourMohammadi, P. Flexible Polarization Manipulation Using Multi-band and Wide-angle Multi-function Reflective Polarization Metasurface for Terahertz Regime. Plasmonics 18, 2263–2272 (2023). https://doi.org/10.1007/s11468-023-01943-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01943-5

Keywords

Navigation