Skip to main content

Green Synthesis of Silver Nanoparticles Using Argyreia nervosa Leaf Extract and Their Antimicrobial Activity

Abstract

The biogenic synthesis of silver nanoparticles (AgNPs) has attracted many researchers due to their physical, chemical, optical, and biological properties, embracing a range of activities such as antibacterial, antifungal, anti-inflammatory, and anticancer activities. The purpose of this work is to synthesize and characterize AgNPs using Argyreia nervosa (AN) plant leaf extract, as well as to test their antimicrobial applications. In this work, silver nitrate (AgNO3) at 0.1 mM concentration and stable AgNPs were synthesized and observed by monitoring the color change of the solution from light yellow to brown. The UV–Vis spectrum shows a peak at 445 nm, confirming the formation of AN-AgNPs and Fourier transform infrared (FTIR) results confirm the presence of chemical groups which act as reducing agents stabilizing the AN-AgNPs and antimicrobial capping agents enhancing antimicrobial properties of AN-AgNPs. The crystalline behavior of these AN-AgNPs is confirmed through X-ray powder diffraction (PXRD) peaks. The morphology of AN-AgNPs and their sizes were studied (sizes range from 10 to 40 nm) using scanning electron microscopy (SEM). The disk diffusion assay shows the antimicrobial activity over Escherichia coli pathogenic microorganisms of clinical interest. The obtained results confirm a more significant antimicrobial effect of the biogenic AN-AgNPs maintaining low cytotoxicity. This work presents a potential way to produce non-toxic biogenic AgNPs with enhanced antibacterial activity, which can meet the increasing global demand for biogenic AgNPs as an alternative to antibiotics.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Data Availability

The authors are going to provide data of any specific analysis.

References

  1. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Adv Mater 11:23–256

    Google Scholar 

  2. Tang S, Mao C, Liu Y, Kelly DQ, Banerjee SK (2007) IEEE Trans

  3. Thakkar K, Mhatre S, Parikh R (2009) Nanotechnol. Biol Med 6:257–262

    Google Scholar 

  4. Fakhari S, Jamzad M, Kabiri Fard H (2019) Green Chem Lett Rev 12:19–2

  5. Ramsden J (2016) Nanotechnology:William Andrew

  6. Ahmed S, Ahmad M, Swami B, Ikram S (2016) J Adv Res 7:17–28

    Article  CAS  PubMed  Google Scholar 

  7. Tang S, Mao C, Liu Y, Kelly DQ, Banerjee SK (2007) IEEE Trans

  8. Thakkar K, Mhatre S, Parikh R (2009) Nanotechnol. Biol Med 6:257–262

    Google Scholar 

  9. Chen H, Roco MC, Li X, Lin Y (2008) Trends in nanotechnology patents. Nat Nanotechnol 3:123–125

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Roco MC, Li X, Lin Y (2008) Trends in nanotechnology patents. Nat Nanotechnol 3:123–125

    Article  CAS  PubMed  Google Scholar 

  11. Smetana AB, Klabunde KJ, Sorensen CM J (2005) Colloid Interface Sci 284:521–526

    Article  CAS  PubMed  Google Scholar 

  12. Lee H, Chou KS, Huang KC (2005) Nanotechnology 16:2436–2441

    Article  CAS  PubMed  Google Scholar 

  13. Shenton W, Douglas T, Young M, Stubbs G, Mann S (1999) Adv Mater 11:23–256

    Google Scholar 

  14. Wakuda D, Kim KS, Suganuma K (2008) Scripta Mater 59:649–652

    Article  CAS  Google Scholar 

  15. Anna Z, Eva S, Adriana Z, Maria G, Jan H (2009) Procedia Chem 1:1560–1566

  16. Kholoud MM, Abou E, Ala A, Abdulrhman Reda AAA (2010) Arab J Chem 3:135–140

  17. Haggag EG, Elshamy AM, Rabeh MA, Gabr NM, Salem M, Youssif KA, Samir A, Bin Muhsinah A, Alsayari A, Abdelmohsen U (2019) R. Int J Nanomed 14:6217–6229

    Article  CAS  Google Scholar 

  18. Iravani S (2011) Green Chem 13:2638–2650

    Article  CAS  Google Scholar 

  19. Duan H, Wang D, Li Y (2015) Chem Soc Rev 44:5778–5792

    Article  CAS  PubMed  Google Scholar 

  20. Kumar V, Anthony S (2016) Surf Chem Nanobiomater 265–300

  21. Hasan S (2015) Res J Recent Sci 4:1–3

    Article  Google Scholar 

  22. Prabu HJ, Johnson I, Karbala (2015) Int J Mod Sci 1:237–246

  23. Shakeel AH, Saifullah, MA, Babulal S, Saiqa I (2016) J Radiat Res Appl Sci 9:1–7

  24. Khatoon A, Khan F, Ahmad N, Shaikh S, Rizvi SM, Shakil S, Al-Qahtani MH, Abuzenadah AM, Tabrez S, Ahmed AB, Alafnan A (2018) Life Sci 15:430–434

  25. Annu S (2018) A, Gurpreet, K, Praveen, S, Sandeep, S, Saiqa, I. J Appl Biomed 16:221–231

    Article  Google Scholar 

  26. Padalia H, Moteriya P, Chanda S (2015) Arab J Chem 8:732–741

    Article  CAS  Google Scholar 

  27. Lakshmanan G, Sathiyaseelan A, Kalaichelvan PT, Murugesan K (2018) Karbala Int J Mod Sci 4:61–68

    Article  Google Scholar 

  28. Benakashani F, Allafchian A, Jalali SAH (2017) Green Chem Lett Rev 10:324–330

    Article  CAS  Google Scholar 

  29. Kumar DA, Palanichamyand V, Roopan SM (2014) Spectrochim Acta Part A 127:168 –171

  30. Sankar R, Manikandan P, Malarvizhi V, Fathima T, Shivashangariand KS, Ravikumar V (2014) Spectrochim Acta Part A 121:746–750

  31. Dhand V, Soumya L, Bharadwaj S, Chakra S, Bhattand D, Sreedhar B (2016) Mater Sci Eng C 58:36–43

  32. Saifullah AS, Ahmad M, Swamiand BL, Ikram S, Radiat J (2016) Res Appl Sci 9:1–7

  33. Khalil MM, Ismail EH, El-Baghdadyand KZ, Mohamed D (2014) Arabian J Chem 7:1131–1139

  34. Ameen F, AlYahya S, Govarthanan M, ALjahdali N, Al-Enazi N, Alsamhary K, Alshehri WA, Alwakeeland SS, Alharbi SA (2020) J Mol Struct 1202:1272

  35. Kalakonda P (2016) Nanomater Nanotechnol 6:1847980416663672

    Article  Google Scholar 

  36. Kalakonda P, Banne S (2017) Plasmonics 12(4):1221

    Article  CAS  Google Scholar 

  37. Kalakonda P, Banne S (2018) Plasmonics 13(4):1265

    Article  CAS  Google Scholar 

  38. Parveen K, Banse V, Ledwani L (2016) AIP Conf Proc 1724:020048

    Google Scholar 

  39. Nune SK, Chanda N, Shukla R, Katti K, Kulkarni RR, Thilakavathyand S, Katti KV (2009) J Mater Chem 19:2912–2920

  40. Widatalla HA, Yassin LF, Alrasheid AA, Ahmed SAR, Widdatallah MO, Eltilib SH, Mohamed AA (2022) 4(3):911–915

  41. Sriramprabha R, Divagar M, Ponpandian N, Viswanathan C (2018) J Electrochem Soc 165:498-B507

    Article  Google Scholar 

  42. Tangand S, Zheng J (2018) Adv Healthcare Mater 7:1701503

  43. Le Ouayand B, Stellacci F (2015) Nano Today 10:339–354

  44. Keshari AK, Srivastava R, Singh P, Yadavand VB, Nath G (2020) J Ayurveda Integr Med 11:37–44

  45. Gandhiand H, Khan S (2016) J Nanomed Nanotechnol 7:1000366

    Google Scholar 

  46. Mani M, Harikrishnan R, Purushothaman P, Pavithra S, Rajkumar P, Kumaresan S, Dunia A, Al Farraj, Mohamed SE, Balamuralikrishnan B, Kaviyarasu S (2021) Environ Res 202:111627

  47. Helen R, Jon G, Zachary H, Erin O (2021) Semmens, Elizabeth Williams, Erin L (2021) Landguth Environ Res 198:111195

  48. Barbhuiya RI, Singha P, Asaithambi N, Singh SK (2022) Food Chem 385:132602

    PubMed  Google Scholar 

  49. Mani M, Pavithra S, Mohanraj K, Kumaresan S, Saqer SA, Mostafa M, Eraqi A, Dhanesh G, Ranganathan B, Maaza M, Kaviyarasu K (2021) Environ Res 199:111274

Download references

Acknowledgements

The authors would like to thank to Department of Chemistry, Department of Biochemistry, University of Hyderabad, Hyderabad, Government City College (A), Osmania University, Hyderabad, Telangana, for providing facilities.

Funding

The authors would like to thank to Commissionerate of Collegiate Education (CCE), Telangana, India, for providing funding support.

Author information

Authors and Affiliations

Authors

Contributions

K. Parvathalu, S. Chinmayee, B. Preethi, A. Swetha, S. Ramu Naidu, and Merlinsheeba have been contributed data collection. K. Parvathalu analyzed data and drafted manuscript. M. Pritam, B. Sreenivas, B. Murali, M. Vijay, K. Moses, D. Chinni Krishna, and P. Bala Bhaskar helped in discussion part of the project at various levels.

Corresponding author

Correspondence to K. Parvathalu.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvathalu, K., Chinmayee, S., Preethi, B. et al. Green Synthesis of Silver Nanoparticles Using Argyreia nervosa Leaf Extract and Their Antimicrobial Activity. Plasmonics 18, 1075–1081 (2023). https://doi.org/10.1007/s11468-023-01835-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01835-8

Keywords

  • Silver nanoparticles
  • Green synthesis
  • Crystalline
  • Antibacterial activity