Skip to main content
Log in

Simulation of a Transparent Wood-Based Surface Plasmon Resonance Sensor with Silver Nano Disks for Measuring the Refractive Index of Crude Oil

  • RESEARCH
  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

In this study, for the first time to our knowledge, the effect of silver nano disks on the performance of a transparent wood (TW)–based surface plasmon resonance sensor filled with Polyvinylpyrrolidone (PVP) polymer is designed and analytically studied by a finite element method via COMSOL multiphysics for the crude oil detection with refractive indices ranging from 1.4468 to 1.498860. The simulation results exhibit that the reflectance dip of the transparent wood nanostructure considerably decreases due to more refractive index matching between the PVP polymer and the cellulose compared with the original wood. Also, the proposed organic sensor has the applicability for detecting the crude oil with the average sensitivity of 170.69 deg/RIU and high accuracy based on surface plasmon resonance (SPR). This study is proposing a new method for measuring the refractive index of the low transparent crude oil using combinations of the polymer infiltration into the wood microstructures and embedding of the silver nano disks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Castillo J, Gutierrez H, Ranaudo M, Villarroe O (2010) Measurement of the refractive index of crude oil and asphaltene solutions: onset flocculation determination. Energy Fuels 24:492–495. https://doi.org/10.1021/ef900861d

    Article  CAS  Google Scholar 

  2. Shahebrahimi Y, Fazlali A, Motamedi H, Kord S (2019) Experimental insight into the effects of two asphaltene-degrading bacterial consortia on crude oil properties. Energy Fuels 33:8007–8013. https://doi.org/10.1021/acs.energyfuels.9b01085

    Article  CAS  Google Scholar 

  3. Langevin D, Poteau S, Hénaut I, Argillier J (2004) Crude oil emulsion properties and their application to heavy oil transportation. Oil Gas Sci Technol 59:511–521. https://doi.org/10.2516/ogst:2004036

    Article  CAS  Google Scholar 

  4. Banerjee S, Kumar M, Ansari I, Mandal A (2016) Studies on naturally extracted surfactant to enhance flow properties of crude oil. J Mod Chem Chem Technol 7:42–49

    CAS  Google Scholar 

  5. Urrutia A, Goicoechea J, Arregui FJ (2015) Optical fiber sensors based on nanoparticle-embedded coatings. J Sens. https://doi.org/10.1155/2015/805053

    Article  Google Scholar 

  6. Buckley JS, Wang J (2002) Crude oil and asphaltene characterization for prediction of wetting alteration. J Pet Sci Eng 33:195–202. https://doi.org/10.1016/S0920-4105(01)00189-9

    Article  CAS  Google Scholar 

  7. Wang XD, Wolfbeis OS (2013) Fiber-optic chemical sensors and biosensors. Anal Chem 85:487–508. https://doi.org/10.1021/ac303159b

    Article  CAS  PubMed  Google Scholar 

  8. Gateau P, Hénaut I, Barré L, Argillier JF (2004) Heavy oil dilution. Oil Gas Sci Technol 59:503–509

    Article  CAS  Google Scholar 

  9. Samavati A, Samavati Z, Ismail AF, Yahya N, Othman MHD, Rahman MA (2021) Multi aspect investigation of crude oil concentration detecting via optical fiber sensor coated with ZnO/Ag nano-heterostructure. Measurement 167:108171. https://doi.org/10.1016/j.measurement.2020.108171

  10. Ghandoor HE, Hegazi E, Nasser I, Behery GM (2003) Measuring the refractive index of crude oil using a capillary tube interferometer. Opt Laser Technol 35:361–367. https://doi.org/10.1016/S0030-3992(03)00029-X

    Article  CAS  Google Scholar 

  11. Escobedo C, Brolo AG, Gordon R, Sinton D (2012) Optofluidic concentration: plasmonic nanostructure as concentrator and sensor. Nano Lett 12:1592–1596. https://doi.org/10.1021/nl204504s

    Article  CAS  PubMed  Google Scholar 

  12. Ooms MD, Fadaei H, Sinton D (2015) Surface plasmon resonance for crude oil characterization. Energy Fuels 29:3019–3023. https://doi.org/10.1021/acs.energyfuels.5b00340

    Article  CAS  Google Scholar 

  13. Peng S, McMahon JM, Schatz GC, Sun Y (2010) Reversing the size-dependence of surface plasmon resonances. Appl Phys Sci 107:14530–14534. https://doi.org/10.1073/pnas.1007524107

    Article  Google Scholar 

  14. Helmlinger J, Sengstock C, Groß-Heitfeld C, Mayer C, Schildhauer TA, Koller M, Epple M (2016) Silver nanoparticles with different size and shape: equal cytotoxicity, but different antibacterial effects. RSC Adv 6:18490–18501. https://doi.org/10.1039/c5ra27836h

    Article  CAS  Google Scholar 

  15. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  16. Stockman MI (2011) Nanoplasmonics: past, present, and glimpse into future. Opt Express 19:22029–22106

    Article  PubMed  Google Scholar 

  17. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1:13–28. https://doi.org/10.1016/j.jare.2010.02.002

    Article  Google Scholar 

  18. Ghosh SK, Pal T (2007) Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: from theory to applications. Chem Rev. https://doi.org/10.1021/cr0680282

    Article  PubMed  Google Scholar 

  19. Liu X, Atwater M, Wang J, Huo Q (2007) Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf B 58:3–7. https://doi.org/10.1016/j.colsurfb.2006.08.005

    Article  CAS  Google Scholar 

  20. Hosseinpour M, Zendehnam A, Sangdehi SM, Marzdashti HG (2021) Simulation of the improvement in the performance of a silver-based surface plasmon resonance biosensor using experimental results of cold plasma treatment of glass substrate. J Comput Sci. https://doi.org/10.1016/j.jocs.2021.101410

    Article  Google Scholar 

  21. Hosseinpour M, Zendehnam A, Sangdehi SMH, Marzdashti HG (2022) Non-perpendicular incidence angle of cold atmospheric-pressure plasma treatment for fabrication of silver-based surface plasmon resonance biosensor for detection of Escherichia coli in water. Water Supply 22:1183–1198. https://doi.org/10.2166/ws.2021.282

    Article  CAS  Google Scholar 

  22. Dormeny AA, Sohi PA, Kahrizi M (2020) Design and simulation of a refractive index sensor based on SPR and LSPR using gold nanostructures. Results Phys 16:102869. https://doi.org/10.1016/j.rinp.2019.102869

  23. Walters G, Parkin IP (2009) The incorporation of noble metal nanoparticles into host matrix thin films: synthesis, characterization and applications. J Mater Chem 19:574–590. https://doi.org/10.1039/B809646E

    Article  CAS  Google Scholar 

  24. Chen C, Zhang Y, Li Y, Dai J, Song J, Yao Y, Gong Y, Kierzewski I, Xie J, Hu L (2017) All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ Sci 10:538–545. https://doi.org/10.1039/C6EE03716J

    Article  CAS  Google Scholar 

  25. Xu S, Chen C, Kuang Y, Song J, Gan W, Liu B, Hitz EM, Connell JW, Lin Y, Hu L (2018) Flexible lithium-CO battery with ultrahigh capacity and stable cycling. Energy Environ Sci 11:3231–3237. https://doi.org/10.1039/C8EE01468J

    Article  CAS  Google Scholar 

  26. Doelle K, Le AT, Amidon TE, Bujanovic BM (2014) Use of poly-lactic acid (PLA) to enhance properties of paper based on recycled pulp. Adv Chem Eng Sci 4:347–360. https://doi.org/10.4236/aces.2014.43038

    Article  CAS  Google Scholar 

  27. Wang L, Jackman JA, Tan EL, Park JH, Potroz MG, Hwang ET, Cho NJ (2017) High-performance, flexible electronic skin sensor incorporating natural microcapsule actuators. Nano Energy 36:38–45. https://doi.org/10.1016/j.nanoen.2017.04.015

    Article  CAS  Google Scholar 

  28. Wang Q, Jian M, Wang C, Zhang Y (2017) Carbonized silk nanofiber membrane for transparent and sensitive electronic skin. Adv Funct Mater 27:1605657. https://doi.org/10.1002/adfm.201605657

    Article  CAS  Google Scholar 

  29. Wan Y, Qiu Z, Huang J, Yang J, Wang Q, Lu P, Yang J, Zhang J, Huang S, Wu Z, Guo CF (2018) Natural plant materials as dielectric layer for highly sensitive flexible electronic skin. Small. https://doi.org/10.1002/smll.201801657

    Article  PubMed  Google Scholar 

  30. Zhu M, Li T, Davis C, Yao Y, Dai J, Wang Y, AlQatari FJ, Gilman W, Hu L (2016) Transparent and haze wood composites for highly efficient broadband light management in solar cells. Nano Energy 26:332–339. https://doi.org/10.1016/j.nanoen.2016.05.020

    Article  CAS  Google Scholar 

  31. Guan H, Meng J, Cheng Z, Wang X (2020) Processing natural wood into a high-performance flexible pressure sensor. ACS Appl Mater Interfaces 12:46357–46365. https://doi.org/10.1021/acsami.0c12561

    Article  CAS  PubMed  Google Scholar 

  32. Li Y, Cheng M, Jungstedt E, Xu B, Berglund SL (2019) Optically transparent wood substrate for perovskite solar cells. ACS Sustainable Chem Eng 7:6061–6067. https://doi.org/10.1021/acssuschemeng.8b0624

    Article  CAS  PubMed  Google Scholar 

  33. Chaoji C, Hu L (2020) Nanoscale ion regulation in wood-based structures and their device application. Adv Mater 33:2002890–2002890. https://doi.org/10.1002/adma.202002890

    Article  CAS  Google Scholar 

  34. Li Y, Vasileva E, Sychugov I, Popov S, Berglund L (2018) Optically transparent wood: recent progress, opportunities, and challenges. Adv Opt Mater. https://doi.org/10.1002/adom.201800059

  35. Gan W, Xiao S, Gao L, Li J, Zhan X (2017) Luminescent and transparent wood composites fabricated by poly(methyl methacrylate) and γ-Fe2O3@YVO4:Eu3+ nanoparticle impregnation. ACS Sustainable Chem Eng 5:3855–3862. https://doi.org/10.1021/acssuschemeng.6b02985

    Article  CAS  Google Scholar 

  36. Jia Z, Bao W, Tao C, Song W (2022) Reversibly photochromic wood constructed by depositing microencapsulated/polydimethylsiloxane composite coating. J For Res 33:1409–1418. https://doi.org/10.1007/s11676-021-01414-9

    Article  CAS  Google Scholar 

  37. Höglund M, Garemark J, Nero M, Willhammar T, Popov S, Berglund LA (2021) Facile processing of transparent wood nanocomposites with structural color from plasmonic nanoparticles. Chem Mater 33:3736–4374. https://doi.org/10.1021/acs.chemmater.1c00806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mohammed SH, Shanan NS (2021) Imaging of surface plasmon resonance for nano material of different shapes. J Phys Conf Ser 1999:012149. https://doi.org/10.1088/1742-6596/1999/1/012149

  39. Prabowo BA, Purwidyantri A, Liu KC (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 80:PMC6163427. https://doi.org/10.3390/bios8030080

  40. Börzsönyi A, Heiner Z, Kalashnikov MP, Kovács AP, Osvay K (2008) Dispersion measurement of inert gases and gas mixtures at 800 nm. Appl Opt 47:4856–4863. https://doi.org/10.1364/AO.47.004856

    Article  PubMed  Google Scholar 

  41. Sultanova N, Kasarova S, Nikolov I (2009) Dispersion properties of optical polymers. Acta Phys Pol A. https://doi.org/10.12693/APhysPolA.116.585

    Article  Google Scholar 

  42. Li Y, Fu Q, Yu S, Yan M, Berglund L (2016) Optically transparent wood from a nanoporous cellulosic template: combining functional and structural performance. Biomacromol 17:1358–2136. https://doi.org/10.1021/acs.biomac.6b00145

    Article  CAS  Google Scholar 

  43. Schneider F, Draheim J, Kamberger R, Wallrabe U (2009) Process and material properties of polydimethylsiloxane (PDMS) for Optical MEMS. Sens Actuators A Phys 151:95–99. https://doi.org/10.1016/j.sna.2009.01.026

    Article  CAS  Google Scholar 

  44. Bodurov I, Vlaeva I, Viraneva A, Yovcheva T, Sainov S (2016) Modified design of a laser refractometer. Nanosci Nanotechnol 16:31–33

    CAS  Google Scholar 

  45. König TAF, Ledin PA, Kerszulis J, Mahmoud MA, El-Sayed MA, Reynolds JR, Tsukruk VV (2014) Electrically tunable plasmonic behavior of nanocube-polymer nanomaterials induced by a redox-active electrochromic polymer. ACS Nano 8:6182–6192. https://doi.org/10.1021/nn501601e

    Article  CAS  PubMed  Google Scholar 

  46. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  47. Meng QQ, Zhao X, Lin CY, Chen SJ, Ding YC, Chen ZY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors. https://doi.org/10.3390/s17081846

    Article  PubMed  PubMed Central  Google Scholar 

  48. Ariati R, Sales F, Souza A, Lima RA, Ribeiro J (2021) Polydimethylsiloxane composites characterization and its applications: a review. Polymer. https://doi.org/10.3390/polym13234258

    Article  Google Scholar 

  49. Nguyen HH, Park J, Kang S, Kim M (2015) Surface plasmon resonance: a versatile technique for biosensor applications. Sensors 15:10481–10510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, Methodology, Formal analysis, Investigation, Visualization, Writing—Original Draft and Writing—Review & Editing were performed by Maryam Hosseinpour. The author read and approved the final manuscript.

Corresponding author

Correspondence to Maryam Hosseinpour.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseinpour, M. Simulation of a Transparent Wood-Based Surface Plasmon Resonance Sensor with Silver Nano Disks for Measuring the Refractive Index of Crude Oil. Plasmonics 18, 1241–1254 (2023). https://doi.org/10.1007/s11468-023-01828-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01828-7

Keywords

Navigation