Skip to main content
Log in

Laser-Induced Synthesis of Palladium @ Silver Core–Shell NPs as an Effective Antibacterial Agent

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Q-switched Nd:YAG laser of 1064 nm wavelength was used to synthesize Pd@Ag (core/shell) nanoparticles (NPs) using pulsed laser ablation in distilled water. The synthesized Pd@Ag core–shell NPs were characterized by UV–visible spectrophotometry, Fourier-transform infrared (FT-IR), X-ray diffraction (XRD), transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV–vis spectra clearly showed absorption peaks at around 200 and 405 nm, which are caused by surface plasmon resonance on Pd NPs and Ag NPs, respectively. X-ray diffraction analysis showed that Pd NPs and Ag NPs had a crystalline nature with face-centered cubic structure. The TEM images clearly displayed the core-spherical shell’s shape of produced Pd@Ag NPs, with an average particle size ranging from 65 to 350 nm. Antibacterial activities of Pd@Ag core–shell NPs were investigated using well diffusion method. Pd@Ag core–shell NPs exhibited higher antimicrobial effect against Gram-positive pathogens than Gram-negative strain. Pd NPs, on the other hand, had no significant antibacterial activity compared to Pd@Ag core–shell NPs due to their nontoxicity. Herein, we present results demonstrating the excellent antibacterial action of PLAL-prepared Pd@Ag core–shell nanoparticles to kill microbial organisms. These characteristics distinguish this nanostructure for use in antimicrobial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The article includes all information.

References

  1. Fernández-Arias M, Vilas AM, Boutinguiza M, Rodríguez D, Arias-González F, Pou-Álvarez P, Riveiro A, Gil J, Pou J (2022) Palladium nanoparticles synthesized by laser ablation in liquids for antimicrobial applications. Nanomaterials 12(15):2621

    Article  PubMed  PubMed Central  Google Scholar 

  2. Murray CJ, Ikuta KS, Sharara F, Swetschinski L, Aguilar GR, Gray A, Han C, Bisignano C, Rao P, Wool E, Johnson SC (2022) Global burden of bacterial antimicrobial resistance in 2019: a systematic analysis. The Lancet 399(10325):629–655

    Article  CAS  Google Scholar 

  3. W Raut R, Nikam T, Kashid SB, S Malghe Y (2013) Rapid biosynthesis of platinum and palladium metal nanoparticles using root extract of Asparagus racemosus Linn. Adv Mater Lett 4(8):650–654

    Article  Google Scholar 

  4. Davies J, Davies D (2010) Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 74(3):417–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Al-Omar MS, Jabir M, Karsh E, Kadhim R, Sulaiman GM, Taqi ZJ, Khashan KS, Mohammed HA, Khan RA, Mohammed SA (2021) Gold nanoparticles and graphene oxide flakes enhance cancer cells’ phagocytosis through granzyme-perforin-dependent biomechanism. Nanomaterials 11(6):1382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: no ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48(1):1–12

    Article  PubMed  Google Scholar 

  7. Ding X, Yuan P, Gao N, Zhu H, Yang YY, Xu QH (2017) Au-Ag core-shell nanoparticles for simultaneous bacterial imaging and synergistic antibacterial activity. Nanomedicine: Nanotechnology, Biology and Medicine, 13(1):297–305

  8. Yang L, Yan W, Wang H, Zhuang H, Zhang J (2017) Shell thickness-dependent antibacterial activity and biocompatibility of gold@ silver core–shell nanoparticles. RSC Adv 7(19):11355–11361

    Article  CAS  Google Scholar 

  9. Hamad A, Khashan KS, Hadi A (2020) Silver nanoparticles and silver ions as potential antibacterial agents. J Inorg Organomet Polym Mater 30(12):4811–4828

    Article  CAS  Google Scholar 

  10. MubarakAli D, Kim H, Venkatesh PS, Kim JW, Lee SY (2022) A systemic review on the synthesis, characterization, and applications of palladium nanoparticles in biomedicine. Applied Biochemistry and Biotechnology 1–20

  11. Bakr EA, El-Attar HG, Salem MA (2019) Colloidal Ag@ Pd core–shell nanoparticles showing fast catalytic eradication of dyes from water and excellent antimicrobial behavior. Res Chem Intermed 45(3):1509–1526

    Article  CAS  Google Scholar 

  12. Chen S, Wang L, Duce SL, Brown S, Lee S, Melzer A, Cuschieri SA, André P (2010) Engineered biocompatible nanoparticles for in vivo imaging applications. J Am Chem Soc 132(42):15022–15029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Sun S, Murray CB, Weller D, Folks L, Moser A (2000) Monodisperse FePt nanoparticles and ferromagnetic FePt Nanocrystal Superlattices. Science 287(5460):1989–1992

  14. Lahiri D, Bunker B, Mishra B, Zhang Z, Meisel D, Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Chattopadhyay S, Shibata T (2005) Bimetallic Pt–Ag and Pd–Ag nanoparticles. J Appl Phys 97(9):094304

    Article  Google Scholar 

  15. Patel K, Kapoor S, Dave DP, Mukherjee T (2005) Synthesis of Pt, Pd, Pt/Ag and Pd/Ag nanoparticles by microwave-polyol method. J Chem Sci 117(4):311–316

    Article  CAS  Google Scholar 

  16. Redjala T, Remita H, Apostolescu G, Mostafavi M, Thomazeau C, Uzio D (2006) Bimetallic Au-Pd and Ag-Pd clusters synthesised by or electron beam radiolysis and study of the reactivity/structure relationships in the selective hydrogenation of Buta-1, 3-Diene. Oil & Gas Science and Technology-Revue de l’IFP 61(6):789–797

    Article  CAS  Google Scholar 

  17. Huang X, Tang S, Liu B, Ren B, Zheng N (2011) Enhancing the photothermal stability of plasmonic metal Nanoplates by a core-shell architecture. Adv Mater 23(30):3420–3425

    Article  CAS  PubMed  Google Scholar 

  18. Chen YH, Tseng YH, Yeh CS (2002) Laser-induced alloying Au–Pd and Ag–Pd colloidal mixtures: the formation of dispersed Au/Pd and Ag/Pd nanoparticles. J Mater Chem 12(5):1419–1422

    Article  CAS  Google Scholar 

  19. Khan NA, Shaikhutdinov S, Freund HJ (2006) Acetylene and ethylene hydrogenation on alumina supported Pd-Ag model catalysts. Catal Lett 108(3):159–164

    Article  CAS  Google Scholar 

  20. Ranjbar M, Kalhori H, Mahdavi SM (2012) New gasochromic system: nanoparticles in liquid. J Nanopart Res 14(4):1–10

    Article  Google Scholar 

  21. Li X, Odoom-Wubah T, Huang J (2018) Biosynthesis of Ag–Pd bimetallic alloy nanoparticles through hydrolysis of cellulose triggered by silver sulfate. RSC Adv 8(53):30340–30345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Khashan KS, Hassan AI, Addie AJ (2016) Characterization of CuO thin films deposition on porous silicon by spray pyrolysis. Surf Rev Lett 23(05):1650044

    Article  CAS  Google Scholar 

  23. Khashan KS, Abbas SF (2019) Indium nitride nanoparticles prepared by laser ablation in liquid. Int J Nanosci 18(02):1850021

    Article  CAS  Google Scholar 

  24. Ismail RA, Khashan KS, Alwan AM (2017) Study of the effect of incorporation of CdS nanoparticles on the porous silicon photodetector. SILICON 9(3):321–326

    Article  CAS  Google Scholar 

  25. Monsa Y, Gal G, Lerner N, Bar I (2020) A simple strategy for enhanced production of nanoparticles by laser ablation in liquids. Nanotechnology 31(23):235601

    Article  CAS  PubMed  Google Scholar 

  26. Khashan KS, Ismail RA, Mahdi RO (2018) Synthesis of SiC nanoparticles by SHG 532 nm Nd: YAG laser ablation of silicon in ethanol. Appl Phys A 124(6):1–11

    Article  CAS  Google Scholar 

  27. Hadi AA, Badr BA, Mahdi RO, Khashan KS (2020) Rapid laser fabrication of Nickel oxide nanoparticles for UV detector. Optik 219:165019

    Article  CAS  Google Scholar 

  28. Hameed R, Khashan KS, Sulaiman GM (2020) Preparation and characterization of graphene sheet prepared by laser ablation in liquid. Materials Today: Proceedings 20:535–539

    CAS  Google Scholar 

  29. Khashan KS, Hadi A, Mahdi M, Hamid MK (2019) Nanosecond pulse laser preparation of InZnO (IZO) nanoparticles NPs for high-performance photodetector. Appl Phys A 125(1):51

    Article  Google Scholar 

  30. Aruguete DM, Hochella MF (2010) Bacteria–nanoparticle interactions and their environmental implications. Environ Chem 7(1):3–9

    Article  CAS  Google Scholar 

  31. Mottaghi N, Ranjbar M, Farrokhpour H, Khoshouei M, Khoshouei A, Kameli P, Salamati H, Tabrizchi M, Jalilian-Nosrati M (2014) Ag/Pd core-shell nanoparticles by a successive method: pulsed laser ablation of Ag in water and reduction reaction of PdCl2. Appl Surf Sci 292:892–897

    Article  CAS  Google Scholar 

  32. Eisa WH et al (2019) Clean production of powdery silver nanoparticles using Zingiber officinale: the structural and catalytic properties. J Clean Prod 241:118398‏

  33. Amendola V, Meneghetti M (2013) What controls the composition and the structure of nanomaterials generated by laser ablation in liquid solution? Phys Chem Chem Phys 15(9):3027–3046

    Article  CAS  PubMed  Google Scholar 

  34. Kim J, Reddy DA, Ma R, Kim TK (2014) The influence of laser wavelength and fluence on palladium nanoparticles produced by pulsed laser ablation in deionized water. Solid State Sci 37:96–102

    Article  CAS  Google Scholar 

  35. Sylvestre JP, Poulin S, Kabashin AV, Sacher E, Meunier M, Luong JH (2004) Surface chemistry of gold nanoparticles produced by laser ablation in aqueous media. J Phys Chem B 108(43):16864–16869

    Article  CAS  Google Scholar 

  36. Bapat RA, Chaubal TV, Joshi CP et al (2018) An overview of application of silver nanoparticles for biomaterials in dentistry. Mater Sci Eng C 91:881–898. https://doi.org/10.1016/j.msec.2018.05.069

    Article  CAS  Google Scholar 

  37. Khorrami S, Zarrabi A, Khaleghi M, Danaei M, Mozafari M (2018) Selective cytotoxicity of green synthesized silver nanoparticles against the MCF-7 tumor cell line and their enhanced antioxidant and antimicrobial properties. Int J Nanomedicine 13:8013–8024. https://doi.org/10.2147/IJN.S189295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Kempasiddaiah M et al (2020) Immobilizing biogenically synthesized palladium nanoparticles on cellulose support as a green and sustainable dip catalyst for cross-coupling reaction. Cellulose 27(6):3335–3357‏

  39. Nasrollahzadeh M et al (2015) Preparation of palladium nanoparticles using Euphorbia thymifolia L. leaf extract and evaluation of catalytic activity in the ligand-free Stille and Hiyama cross-coupling reactions in water. New J Chem 39(6):4745–4752‏

  40. Aadim Ph D KA, Jasim Ph D AS (2022) Silver nanoparticles synthesized by Nd: YAG laser ablation technique: characterization and antibacterial activity. Karbala Int J Mod Sci 8(1):71–82

  41. Sharif M, Dorranian D (2015) Effect of NaCl concentration on silver nanoparticles produced by 1064 nm laser ablation in NaCl solution. Mol Cryst Liq Cryst 606(1):36–46

    Article  CAS  Google Scholar 

  42. Siddiqi KS, Husen A (2016) Green synthesis, characterization and uses of palladium/platinum nanoparticles. Nanoscale Res Lett 11(1):1–13

    Article  Google Scholar 

  43. Boutinguiza M et al (2016) Synthesis and characterization of Pd nanoparticles by laser ablation in water using nanosecond laser. Phys Procedia 83:36–45

    Article  CAS  Google Scholar 

  44. Bunaciu AA, UdriŞTioiu EG, Aboul-Enein HY (2015) X-ray diffraction: instrumentation and applications. Crit Rev Anal Chem 45(4):289–299

  45. Ismail RA, Mousa AM, Amin MH (2018) Synthesis of hybrid Au@ PbI2 core-shell nanoparticles by pulsed laser ablation in ethanol. Materials Research Express 5(11):115024

    Article  Google Scholar 

  46. Tweedy BG (1964) Plant extracts with metal ions as potential antimicrobial agents. Phytopathology 55:910–914

    Google Scholar 

  47. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomed 12:1227

    Article  CAS  Google Scholar 

  48. Reda M, Ashames A, Edis Z, Bloukh S, Bhandare R, Abu Sara H (2019) Green synthesis of potent antimicrobial silver nanoparticles using different plant extracts and their mixtures. Processes 7(8):510

    Article  CAS  Google Scholar 

  49. Joseph Kirubaharan C, Fang Z, Sha C, Yong YC (2020) Green synthesis of Ag and Pd nanoparticles for water pollutants treatment. Water Sci Technol 82(11):2344–2352

    Article  CAS  PubMed  Google Scholar 

  50. Varier KM, Gudeppu M, Chinnasamy A, Thangarajan S, Balasubramania J, Li Y, Gajendran B (2019) Nanoparticles: antimicrobial applications and its prospects. In Advanced nanostructured materials for environmental remediation. Springer, Cham, pp 321–355

  51. Hussein S, Mahmoud AM, Elgebaly HA, Hendawy OM, Hassanein EH, Moustafa SM, Alotaibi NF, Nassar AM (2022) Green synthesis, characterization, antimicrobial activity, and in vitro antiproliferative effect of Ru/Ag/Pd nanocomposite. https://doi.org/10.21203/rs.3.rs-1819275/v1

  52. Sivamaruthi BS, Ramkumar VS, Archunan G, Chaiyasut C, Suganthy N (2019) Biogenic synthesis of silver palladium bimetallic nanoparticles from fruit extract of Terminalia chebula–In vitro evaluation of anticancer and antimicrobial activity. J Drug Deliv Sci Technol 51:139–151

    Article  CAS  Google Scholar 

  53. Anjana PM, Bindhu MR, Umadevi M, Rakhi RB (2019) Antibacterial and electrochemical activities of silver, gold, and palladium nanoparticles dispersed amorphous carbon composites. Appl Surf Sci 479:96–104

    Article  CAS  Google Scholar 

  54. Ahmed AA, Aldeen TS, Al-Aqil SA, Alaizeri ZM, Megahed S (2022) Synthesis of trimetallic (Ni-Cu)@Ag core@ shell nanoparticles without stabilizing materials for antibacterial applications. ACS Omega 7(42):37340–37350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Acharya D, Mohanta B, Pandey P (2021) Green synthesis of silver and silver-gold core-shell nanoparticles using Pineapple leaf extract (Ananas comosus) and study of their antibacterial properties. Int J Nano Dimens 12(3):203–210

    CAS  Google Scholar 

Download references

Acknowledgements

The University of Technology in Baghdad, Iraq, provided assistance, which the authors are grateful for.

Author information

Authors and Affiliations

Authors

Contributions

All authors wrote the manuscript.

Corresponding author

Correspondence to Khawla S. Khashan.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hasan, S., Khashan, K.S. & Hadi, A.A. Laser-Induced Synthesis of Palladium @ Silver Core–Shell NPs as an Effective Antibacterial Agent. Plasmonics 18, 689–699 (2023). https://doi.org/10.1007/s11468-023-01797-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-023-01797-x

Keywords

Navigation