Skip to main content

Advertisement

Log in

Dual-Band Perfect Absorber Based on All-Dielectric GaAs Metasurface for Terahertz Wave

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Although many multi-band terahertz (THz)–metasurface perfect absorbers (MPAs) have been proposed, many efforts are still suffering from complex structure design and high fabrication cost, thus limited in practical application. Here, a simple design of the dual-band MPA was proposed in the THz region, which is composed of the complementary-star-shaped (CSS) structure all-dielectric GaAs array. Simulation results show that the designed MPA can achieve an absorbance of over 99.9% at 0.715 THz and 0.861 THz, respectively, which can be confirmed by the coupling mode theory (CMT). In addition, the high Q-factors of about 79.58 and 78.27 of the designed MPA can be achieved, respectively. The observed perfect absorption of the MPA is mainly contributed to the excitations of the surface plasmonic polaritons (SPPs) modes. The absorption properties of the MPA can be adjusted by varying the geometric parameters of the unit-cell structure. Due to its excellent properties, the designed dual-band MPA may find many potential THz applications in sensing, detecting, thermal emitting, and imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Yu NF, Francesco A, Patrice G, Mikhail AK, Zeno G, Federico C (2012) A broadband, background-free quarter-wave plate based on plasmonic metasurfaces. Nano Lett 12:6328–6333

    Article  CAS  PubMed  Google Scholar 

  2. Kildishev AV, Boltasseva A, Shalaev VM (2013) Planar photonics with metasurfaces. Science 339:1232009

    Article  PubMed  Google Scholar 

  3. Holloway L, Kuester EF, Gordon JA, Hara JO, Booth J, Smith DR (2012) An overview of the theory and applications of metasurfaces: the two-dimensional equivalents of metamaterials. IEEE Antenn Propag 54:10–35

    Article  Google Scholar 

  4. He Q, Sun SL, Xiao SY, Zhou L (2018) High-effiiency metasurfaces: Principles, realizations, and applications. Adv Opt Mater 28:1800415

    Article  Google Scholar 

  5. Ding X, Monticone F, Zhang K, Zhang L, Gao D, Burokur SN, Lustrac A, Wu Q, Qiu CW, Alù A (2015) Ultrathin pancharatnam-berry metasurface with maximal cross-polarization efficiency. Adv Mater 27:1195–1200

    Article  CAS  PubMed  Google Scholar 

  6. Guo YH, Pu MB, Zhao ZY, Wang YQ, Luo XG (2016) Merging geometric phase and plasmon retardation phase in continuously shaped metasurfaces for arbitrary orbital angular momentum generation. ACS Photonics 3:2022–2029

    Article  CAS  Google Scholar 

  7. West PR, Stewart JL, Kildishev AV, Shalaev VM, Shkunov VV, Strohkendl F, Zakharenkov YA, Dodds RK, Byren R (2014) All-dielectric subwavelength metasurface focusing lens. Opt Express 22:26212–26221

    Article  PubMed  Google Scholar 

  8. Wang JY, Fan JP, Shu H, Liu C, Cheng Y (2021) Efficiency-tunable terahertz focusing lens based on graphene metasurface. Opto-Electron Eng 48(4):200319

    Google Scholar 

  9. Zhu XZ, Cheng YZ, Chen F, Luo H, Wu L (2022) Efficiency adjustable terahertz circular polarization anomalous refraction and planar focusing based on a bi-layered complementary Z-shaped graphene metasurface. J Opt Soc Am B 39(3):705–712

    Article  CAS  Google Scholar 

  10. Yang DR, Cheng YZ, Chen F, Luo H, Wu L (2023) Efficiency tunable broadband terahertz graphene metasurface for circular polarization anomalous reflection and plane focusing effect. Diam Relat Mater 131:10960

    Article  Google Scholar 

  11. Cole MA, Powell DA, Shadrivov LV (2016) Strong terahertz absorption in all-dielectric Huygens’ metasurfaces. Nanotechnology 27:424003

    Article  PubMed  Google Scholar 

  12. Landy NI, Sajuyigbe S, Mock JJ, Smith DR, Padilla WJ (2008) Perfect metamaterial absorber. Phys Rev Lett 100:207402

    Article  CAS  PubMed  Google Scholar 

  13. Wang Q, Cheng YZ (2020) Compact and low-frequency broadband microwave metamaterial absorber based on meander wire structure loaded resistors. Int J Electron Commun (AEÜ) 120:153198

    Article  Google Scholar 

  14. Gaurav S, Awasthi YK, Priyanka J (2021) Design of metasurface absorber for low RCS and high isolation MIMO antenna for radio location & navigation. Int J Electron Commun (AEÜ) 133:153680

    Article  Google Scholar 

  15. Wen QY, Zhang HW, Xie YS, Yang QH, Liu YL (2009) Dual band terahertz metamaterial absorber: Design, fabrication, and characterization. Appl Phys Lett 95:241111

    Article  Google Scholar 

  16. Zhou HJ, Cheng YZ (2019) Design of a six-band terahertz metamaterial absorber for temperature sensing application. Opt Materials 88:674–679

    Article  Google Scholar 

  17. Grant J, Gough J, Cumming D (2017) Terahertz metamaterial absorbers implemented in CMOS technology for imaging applications: scaling to large format focal plane arrays. IEEE J Sel Top Quantum Electron 23:4700508

    Google Scholar 

  18. Ren H, Lucyszyn S (2020) Thermodynamics-based cognitive demodulation for “THz torch” wireless communications links. Sci Rep 10:6259–6259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kazanskiy NL, Butt MA, Khonina SN (2020) Carbon dioxide gas sensor based on polyhexamethylene biguanide polymer deposited on silicon nano-cylinders metasurface. Sensors 21:378

    Article  Google Scholar 

  20. Cheng YZ, Zhao JC (2022) Simple design of a six-band terahertz perfect metasurface absorber based on a single resonator structure. Phys Scr 97:095508

    Article  Google Scholar 

  21. Wang XY, Wang QM, Dong GY, Hao YN, Lei M, Bi K (2017) Multi-band terahertz metasurface absorber. Mod Phys Lett B 31:1750354

    Article  CAS  Google Scholar 

  22. Chen F, Cheng YZ, Luo H (2020) A broadband tunable terahertz metamaterial absorber based on single-layer complementary gammadion-shaped graphene. Materials 13:860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen ZH, Chen H, Huge Jile XuDY, Yi LYL, Chen XF, Zhou ZG, Cai SS, Li GF (2021) Multi-band multi-tunable perfect plasmon absorber based on L-shaped and double-elliptical graphene stacks. Diam Relat Mater 115:108374

    Article  CAS  Google Scholar 

  24. Wang YQ, Yi YT, Xu DY, Yi Z, Li ZY, Chen XF, Jile H, Zhang JG, Zeng LC, Li GF (2021) Terahertz tunable three band narrowband perfect absorber based on Dirac semimetal. Physica E 131:114750

    Article  CAS  Google Scholar 

  25. Thuy UTD, Thuy NT, Tung NT, Janssens E, Liem NQ (2019) Large-area cost-effective lithography-free infrared metasurface absorbers for molecular detection. APL Mater 7:071102

    Article  Google Scholar 

  26. Yi Z, Li JK, Lin JC, Qin F, Chen XF, Yao WT, Liu ZM, Cheng SB, Wu PH, Li HL (2020) Broadband polarization-insensitive and wide-angle solar energy absorber based on tungsten ring-disc array. Nanoscale 12:23077–23083

    Article  CAS  PubMed  Google Scholar 

  27. Cheng YZ, Chen F, Luo H (2021) Plasmonic chiral metasurface absorber based on bilayer fourfold twisted semicircle nanostructure at optical frequency. Nanoscale Res Lett 16:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Zhang YB, Yi Z, Wang XY, Chu PX, Yao WT, Zhou ZG, Cheng SB, Liu ZM, Wu PH, Pan M, Yi YG (2021) Dual band visible metamaterial absorbers based on four identical ring patches. Physica E 127:114526

    Article  CAS  Google Scholar 

  29. Zhang HS, Cheng YZ, Chen F (2021) Quad-band plasmonic perfect absorber using all-metal nanostructure metasurface for refractive index sensing. Optik 229:166300

    Article  CAS  Google Scholar 

  30. Fan KB, Suen JY, Liu XY, Padilla WJ (2017) All-dielectric metasurface absorbers for uncooled terahertz imaging. Optica 4:601–604

    Article  Google Scholar 

  31. Liu X, Fan K, Shadrivov IV, Padilla WJ (2017) Experimental realization of a terahertz all-dielectric metasurface absorber. Opt Express 25:191–201

    Article  CAS  PubMed  Google Scholar 

  32. Ming XS, Liu XY, Sun LQ, Padilla WJ (2017) Degenerate critical coupling in all-dielectric metasurface absorbers. Opt Express 25:24658–24669

    Article  CAS  PubMed  Google Scholar 

  33. Yang QL, Chen XY, Xu Q, Tian CX, Xu YH, Cong LQ, Zhang XQ, Li YF, Zhang CH, Zhang XX, Han JG, Zhang WL (2018) Broadband terahertz rotator with an all-dielectric metasurface. Photonics Research 6:1056–1061

    Article  CAS  Google Scholar 

  34. Han S, Rybin MV, Prakash P, Yogesh KS, Yuri SK, Ranjan S (2020) Guided-mode resonances in all-dielectric terahertz metasurfaces. Adv Optical Mater 8:1900959

    Article  CAS  Google Scholar 

  35. Zhong YJ, Du LH, Liu Q, Zhu LG, Meng K, Zou Y, Zhang B (2020) Ultrasensitive specific sensor based on all-dielectric metasurfaces in the terahertz range. RSC Adv 10:33018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hu YQ, Wang XD, Luo XH, Ou XN, Li L, Chen YQ, Yang P, Wang S, Duan HG (2020) All-dielectric metasurfaces for polarization manipulation: principles and emerging applications. Nanophotonics 20:20200220

    Google Scholar 

  37. Gao J, Lan C, Zhao Q, Li B, Zhou J (2018) Experimental realization of Mie-resonance terahertz absorber by self-assembly method. Opt Express 26:13001–13011

    Article  CAS  PubMed  Google Scholar 

  38. Luo H, Cheng YZ (2019) Dual-band terahertz perfect metasurface absorber based on bi-layered all-dielectric resonator structure. Opt Mater 96:109279

    Article  CAS  Google Scholar 

  39. Wang Y, Zhu DY, Cui ZJ, Yue LS, Zhang X, Hou L, Zhang K, Hu H (2020) Properties and sensing performance of all-dielectric metasurface THz absorbers. IEEE Trans Terahertz Sci Technol 10:59–605

    Article  Google Scholar 

  40. Li WY, Cheng YZ (2020) Dual-band tunable terahertz perfect metamaterial absorber based on strontium titanate (STO) resonator structure. Opt Commun 462:125265

    Article  CAS  Google Scholar 

  41. Wang Y, Yue LS, Cui ZJ, Zhang XJ, Zhang X, Zhu YQ, Zhang K (2020) Optically tunable single narrow band all dielectric terahertz metamaterials absorber. AIP Adv 10:045039

    Article  CAS  Google Scholar 

  42. Zhao JC, Cheng YZ (2022) Temperature-tunable terahertz perfect absorber based on all-dielectric strontium titanate (STO) resonator structure. Adv Theory Simul 569:2200520

    Article  Google Scholar 

  43. Li ZR, Cheng YZ, Luo H, Chen F, Li XC (2022) Dual-band tunable terahertz perfect absorber based on all-dielectric InSb resonator structure for sensing application. J Alloy Compd 925:166617

    Article  CAS  Google Scholar 

  44. Cheng Y, Liu J, Chen F, Luo H, Li X (2021) Optically switchable broadband metasurface absorber based on square ring shaped photoconductive silicon for terahertz waves. Phys Lett A 402:127345

    Article  CAS  Google Scholar 

  45. Hale LL, Vabischevich PP, Siday T, Harris CT, Luk TS, Addamane SJ, Reno JL, Brener I, Mitrofanov O (2020) Perfect absorption in GaAs metasurfaces near the bandgap edge. Opt Express 28:35284–35296

    Article  CAS  PubMed  Google Scholar 

  46. Cheng YZ, Qian YJ, Luo H, Chen F, Cheng ZZ (2023) Terahertz narrowband perfect metasurface absorber based on micro-ring-shaped GaAs array for enhanced refractive index sensing. Physica E 146:115527

    Article  CAS  Google Scholar 

  47. Piper JR, Fan S (2014) Total absorption in a graphene monolayer in the optical regime by critical coupling with a photonic crystal guided resonance. ACS Photonics 1:347–353

    Article  CAS  Google Scholar 

  48. Jiang XY, Wang T, Xiao SY, Yan XC, Cheng L (2017) Tunable ultra-high-efficiency light absorption of monolayer graphene using critical coupling with guided resonance. Opt Express 25:27028–27036

    Article  CAS  PubMed  Google Scholar 

  49. Liu T, Jiang X, Zhou C (2019) Black phosphorus-based anisotropic absorption structure in the mid-infrared. Opt Express 27:27618

    Article  CAS  PubMed  Google Scholar 

  50. Cen CL, Chen ZQ, Xu DY, Jiang LY, Chen XF, Yi Z, Wu PH, Li GF, Yi YG (2020) High quality factor, high sensitivity metamaterial graphene—perfect absorber based on critical coupling theory and impedance matching. Nanomaterials 10:95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yue LS, Wang Y, Cui ZJ, Zhang XJ, Zhu YQ, Zhang X, Chen SG, Wang XM, Zhang K (2021) Multi-band terahertz resonant absorption based on an all-dielectric grating metasurface for chlorpyrifos sensing. Opt Express 29:13563–13575

    Article  CAS  PubMed  Google Scholar 

  52. Zhou WC, Wu YH, Yu MX, Hao P, Liu GG, Li KW (2013) Extraordinary optical absorption based on guided-mode resonance. Opt Lett 38:5393–5396

    Article  CAS  PubMed  Google Scholar 

  53. Liao YL, Zhao Y (2017) An ultra-narrowband absorber with a dielectric-dielectric-metal structure based on guide-mode resonance. Opt Commun 382:307–310

    Article  CAS  Google Scholar 

  54. Cheng YZ, Chen F, Luo H (2020) Triple-band perfect light absorber based on hybrid metasurface for sensing application. Nanoscale Res Lett 15:103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Smith D, Vier D, Koschny T, Soukoulis C (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71:036617

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xiaodi Weng and Xuejin Wang: software, data curation, and writing—original draft. Xiaodi Weng, Jie Wang, and Xuejin Wang: conceptualization and methodology. Xiaodi Weng, Jie Wang, Changming Xu, Yongqibg Wang, Yining Liao, and Xuejin Wan: visualization and investigation. Xiaodi Weng and Xuejin Wang: writing—review and editing. All authors reviewed the manuscript.

Corresponding author

Correspondence to Xuejin Wang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weng, X., Wang, J., Xu, C. et al. Dual-Band Perfect Absorber Based on All-Dielectric GaAs Metasurface for Terahertz Wave. Plasmonics 18, 521–528 (2023). https://doi.org/10.1007/s11468-022-01783-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01783-9

Keywords

Navigation