Skip to main content
Log in

THz Imaging Technology Trends and Wide Variety of Applications: a Detailed Survey

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Terahertz (THz) imaging is a non-invasive and high spatial-resolution technique that uses non-ionizing electromagnetic signals in a frequency range of 0.1–10 THz. Hence, this article focuses on diverse THz imaging techniques, THz antennas and designing methods, image reconstruction algorithms, and its applications. The antennas include planar patch, photoconductive, dielectric-resonator, substrate-integrated waveguide, wire, and wave guide. In this study, it is noted that antennas with high efficient conducting materials having a compact size, high gain, and high directional properties are required for THz imaging. The image reconstruction algorithms cover back-projection algorithm, range migration algorithm, phase-shift migration algorithm, single-band compressed sensing reconstruction and compressed sensing hyper spectral image reconstruction. High-resolution image reconstruction algorithms and challenges are also reported. From this study, it is noted that a multi–input–multi–output-based phase shift migration algorithm is used for THz imaging due to its high-accuracy and low computation time. It is also noted that the image quality can be enhanced by introducing an inverse fresnel diffraction algorithm into THz images retrieved by compressed sensing. Applications of THz imaging focus on cell detection (tissue-detection, cancer-detection, and bacteria-detection), concealed objects detection, food safety and quality inspection, and monitoring the water level of plant leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37
Fig. 38
Fig. 39
Fig. 40
Fig. 41
Fig. 42
Fig. 43
Fig. 44
Fig. 45
Fig. 46
Fig. 47
Fig. 48
Fig. 49
Fig. 50

Similar content being viewed by others

Data Availability

All the data generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Code Availability

Not applicable.

References

  1. Lee AWM, Qin Qi, Sushil Kumar S, Williams BS, Quin Hu, Reno JL (2006) Real-time terahertz imaging over a standoff distance (>25 meters). Appl Phys Lett 89:141125. https://doi.org/10.1063/1.2360210

    Article  CAS  Google Scholar 

  2. Fathololoumi S, Dupont E, Chan CWI, Wasilewski ZR, Laframboise SR, Ban D, Matyas A, Jirauschek C, Hu Q, Liu HC (2012) Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt Express 20(4):3866–3876. https://doi.org/10.1364/OE.20.003866

    Article  CAS  PubMed  Google Scholar 

  3. Escorcia I, Grant J, Gough J, Cumming DRS (2016) Uncooled CMOS terahertz imager using a metamaterial absorber and pn diode. Opt Lett 41(14):3261–3264. https://doi.org/10.1364/OL.41.003261

    Article  CAS  PubMed  Google Scholar 

  4. Rogalski A, Sizov F (2011) Terahertz detectors and focal plane arrays. Opto-Electron Rev 19(3):346–404. https://doi.org/10.2478/s11772-011-0033-3

    Article  Google Scholar 

  5. Amanti MI, Scalari G, Beck M, Faist J (2012) Stand-alone system for high resolution, real-time terahertz imaging. Opt Express 20:2772–2778. https://doi.org/10.1364/OE.20.002772

    Article  PubMed  Google Scholar 

  6. Locatelli M, Ravaro M, Bartalini S, Consolino L, Vitiello MS, Cicchi R, Pavone F, De Natale P (2015) Real-time terahertz digital holography with a quantum cascade laser. Sci Rep 5:13566. https://doi.org/10.1038/srep13566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yamagiwa M, Ogawa T, Minamikawa T, Abdelsalam DG, Okabe K, Tsurumachi N, Mizutani Y, Iwata T, Yamamoto H, Yasui T (2018) Real-time amplitude and phase imaging of optically opaque objects by combining full-field off-axis terahertz digital holography with angular spectrum reconstruction. J Infrared, Millimeter Terahertz Waves 39:561–572. https://doi.org/10.1007/s10762-018-0482-6

    Article  Google Scholar 

  8. Usami M, Iwamoto T, Ukasawa RF, Tani M, Watanabe M, Sakai K (2002) Development of a THz spectroscopic imaging system. Phys Med Biol 47(27):3749–3753. https://doi.org/10.1088/0031-9155/47/21/311

    Article  CAS  PubMed  Google Scholar 

  9. Tatiana Latychevskaia and Hans-Werner Fink (2007) Solution to the twin image problem in holography. Phys Rev Lett 98(23). https://doi.org/10.1103/PhysRevLett.98.233901

  10. Maiden AM, Rodenburg JM (2009) An improved ptychographical phase retrieval algorithm for diffractive imaging. Ultramicroscopy 109(10). https://doi.org/10.1016/j.ultramic.2009.05.012

  11. Vettikalladi H, Sethi WT, Abas AFB, Ko W, Alkanhal MA, Himdi M (2019) Sub-THz antenna for high-speed wireless communications systems. Hindawi, Int J Antennas Propag 2019:9573647. https://doi.org/10.1155/2019/9573647

    Article  Google Scholar 

  12. He Y, Chen Y, Zhang L, Wong S-W, Chen ZN (2020) An overview of terahertz antennas. China Commun 17:124–165. https://doi.org/10.23919/J.CC.2020.07.011

    Article  Google Scholar 

  13. Sharma A, Singh G (2009) Rectangular microstrip patch antenna design at THz frequency for short distance wireless communication systems. J Infrared, Millimeter Terahertz Waves 30:1. https://doi.org/10.1007/s10762-008-9416-z

    Article  CAS  Google Scholar 

  14. Vizard DR (2006) Millimeter-wave applications: from satellite communications to security systems. Microw J 49(7):22–26

  15. Ahmad I, Ullah S, Ullah S, Habib U, Ahmad S, Ghaffar A, Alibakhshikenari M, Khan S, Limiti E (2021) Design and analysis of a photonic crystal based planar antenna for THz applications. Electronics 10(16):1941. https://doi.org/10.3390/electronics10161941

    Article  CAS  Google Scholar 

  16. Temmar MNE, Hocini A, Khedrouche D, Zamani M (2019) Analysis and design of a terahertz microstrip antenna based on a synthesized photonic bandgap substrate using BPSO. J Comput Electron 18(Springer):231–240. https://doi.org/10.1007/s10825-019-01301-x

    Article  CAS  Google Scholar 

  17. Jha KR, Singh G (2012) Analysis and design of terahertz microstrip antenna on photonic bandgap material. J Comput Electron 11(4):364–373. https://doi.org/10.1007/s10825-012-0416-9

    Article  CAS  Google Scholar 

  18. Chahat N, Reck TJ, Jung-Kubiak C, Nguyen T, Sauleau R, Chattopadhyay G (2015) 1.9-THz multiflare angle horn optimization for space instruments. IEEE Trans Terahertz Sci Technol 5(6):914–921. https://doi.org/10.1109/TTHZ.2015.2487781

    Article  CAS  Google Scholar 

  19. Fan K, Hao Z-C, Hong W (2016) A 325–500 GHz high gain antenna for terahertz applications. International Symposium on Antennas and Propagation (ISAP), pp. 780–781

  20. Sawada H, Kanno A, Yamamoto N, Fujii K, Kasamatsu A, Ishizu K, Kojima F, Ogawa H, Hosako I (2017) High gain antenna characteristics for 300 GHz band fixed wireless communication systems. Progress in Electromagnetics Research Symposium – Fall (PIERS - FALL), pp 1409–1412. https://doi.org/10.1109/PIERS-FALL.2017.8293350

  21. Wang X, Deng C, Hu W, Lv X, Ligthart LP (2017) Dual-band dielectric-loaded horn antenna for terahertz applications. International Applied Computational Electromagnetics Society Symposium (ACES), pp. 1–2

  22. Zhou MM, Cheng YJ (2018) D-band high-gain circular-polarized plate array antenna. IEEE Trans Antennas Propag 66(3):1280–1287. https://doi.org/10.1109/TAP.2018.2796299

    Article  Google Scholar 

  23. Bird T (2006) Terahertz radio systems: the next frontier? CSIRO ICT Centre, Mersfield, NSW, vol. 5, pp. 1-11.

  24. Gearhart SS, Ling CC, Rebeiz GM (1991) Integrated millimeter-wave corner-cube antennas. IEEE Trans Antennas Propag 39(7):1000–1006. https://doi.org/10.1109/8.86921

    Article  Google Scholar 

  25. Gearhart SS, Ling CC, Rebeiz GM, Davee H, Chin G (1991) Integrated 119-μm linear corner-cube array. IEEE Microw Guided Wave Lett 1(7):155–157. https://doi.org/10.1109/75.84567

    Article  Google Scholar 

  26. Markish O, Leviatan Y (2016) Analysis and optimization of terahertz bolometer antennas. IEEE Trans Antennas Propag 64(8):3302–3309. https://doi.org/10.1109/TAP.2016.2573861

    Article  Google Scholar 

  27. Zheng Xu, Dong X, Borneman J (2014) Design of a reconfigurable MIMO system for THz communications based on graphene antennas. IEEE Trans Terahertz Sci Technol 4(5):609–661. https://doi.org/10.1109/TTHZ.2014.2331496

    Article  Google Scholar 

  28. Liu Z, Meng Y, Futai Hu, Xiao Q, Yan P, Gong M (2019) Largely tunable terahertz circular polarization splitters based on patterned graphene nanoantenna arrays. IEEE Photonics J 11(5):1–11. https://doi.org/10.1109/JPHOT.2019.2935752

    Article  Google Scholar 

  29. Wang Y, Zhang X, Wang J, Liu J, Wang Y, Yang K, Yinglin (2010) Manipulating surface plasmon polaritons in a 2-D T-shaped metal-insulator-metal plasmonic waveguide with a joint cavity. IEEE Photon Technol Lett 22(17):1309–1311. https://doi.org/10.1109/LPT.2010.2053531

    Article  CAS  Google Scholar 

  30. Feng N-N, Brongersma ML, Dal Negro L (2007) Metal-dielectric slot-waveguide structures for the propagation of surface plasmon polaritons at 1.55 μm. IEEE J Quant Electron 43(6):479–485. https://doi.org/10.1109/JQE.2007.897913

    Article  CAS  Google Scholar 

  31. Hua Lu, Zeng C, Zhang Q, Xueming Liu Md, Hossain M, Reineck P, Min Gu (2015) Graphene-based active slow surface plasmon polaritons. Sci Rep 5(8443):1–7. https://doi.org/10.1038/srep08443

    Article  CAS  Google Scholar 

  32. Bonaccorso F, Sun Z, Hasan T, Ferrari AC (2010) Graphene photonics and optoelectronics. Nat Photonics 4(9):611–622. https://doi.org/10.1038/nphoton.2010.186

    Article  CAS  Google Scholar 

  33. Varshney G (2020) Tunable terahertz dielectric resonator antenna. Silicon, Springer. https://doi.org/10.1007/s12633-020-00577

    Article  Google Scholar 

  34. Varshney G, Gotra S, Kaur J, Pandey VS, Yaduvanshi RS (2019) Obtaining the circular polarization in a nano-dielectric resonator antenna for photonics applications. Semicond Sci Technol 34(7):07LT01. https://doi.org/10.1088/1361-6641/ab1fd1

    Article  CAS  Google Scholar 

  35. Varshney G, Gotra S, Pandey VS, Yaduvanshi RS (2018) Inverted sigmoid shaped multiband dielectric resonator antenna with dualband circular polarization. IEEE Trans Antennas Propag 66(4):2067–2072. https://doi.org/10.1109/TAP.2018.2800799

    Article  Google Scholar 

  36. Varshney G (2020) Reconfigurable graphene antenna for THz applications: a mode conversion approach. Nanotechnology 31:13. https://doi.org/10.1088/1361-6528/ab60cc

    Article  CAS  Google Scholar 

  37. Meng Xie, Guizhen Lu (2017) Research on terahertz photoconductive antenna. IEEE 5th International Symposium on Electromagnetic Compatibility (EMC-Beijing), pp. 1–5, 2017. https://doi.org/10.1109/EMC-B.2017.8260432

  38. Zhang L, Dai Z (2015) Terahertz fuze antenna technique based on dielectric lens. J Terahertz Sci Electron Inf Technol 13(1):31–34

    CAS  Google Scholar 

  39. Llombart N, Chattopadhyay G, Skalare A, Mehdi I (2011) Novel terahertz antenna based on a silicon lens fed by a leaky wave enhanced waveguide. IEEE Trans Antennas Propag 59(6):2160–2168. https://doi.org/10.1109/TAP.2011.2143663

    Article  Google Scholar 

  40. Alonso-DelPino M, Llombart N, Chattopadhyay G, Lee C, Jung-Kubiak C, Jofre L, Mehdi I (2013) Design guidelines for a terahertz silicon micro-lens antenna. IEEE Antennas Wirel Propag Lett 12:84–87. https://doi.org/10.1109/LAWP.2013.2240252

    Article  Google Scholar 

  41. Hossain AKMZ, Ibrahimy MI, Motakabber SMA (2014) Integrated Si lens antenna with planar log spiral feed for THz band. International Conference on Computer and Communication Engineering, pp. 284–287. https://doi.org/10.1109/ICCCE.2014.87

  42. Hao Z-C, Wang J, Yuan Q, Hong W (2017) Development of a low-cost THz metallic lens antenna. IEEE Antennas Wirel Propag Lett 16:1751–1754. https://doi.org/10.1109/LAWP.2017.2671880

    Article  Google Scholar 

  43. Hao Z-C, Hong W, Chen J-X, Zhai JF (2018) Investigations on the terahertz beam scanning antennas with a wide scanning range. 12th European Conference on Antennas and Propagation (EuCAP), pp. 1–3. https://doi.org/10.1049/cp.2018.0702

  44. Paul Moseley, Giorgio Savini, Peter Ade (2018) Large aperture metal-mesh lenses for THz astronomy. 12th European Conference on Antennas and Propagation (EuCAP), pp. 1–3. https://doi.org/10.1049/cp.2018.0604

  45. Dyck A, Rösch M, Tessmann A, Leuther A, Kuri M, Wagner S (2019) A transmitter system-in-package at 300 GHz with an off-chip antenna and GaAs-based MMICs. IEEE Trans Terahertz Sci Technol 9(3):335–344. https://doi.org/10.1109/TTHZ.2019.2910511

    Article  CAS  Google Scholar 

  46. Lei-Jun Xu, Tong F-C, Bai X, Li Q (2018) Design of miniaturised on-chip slot antenna for THz detector in CMOS. IET Microwaves Antennas Propag 12(8):1324–1331. https://doi.org/10.1049/iet-map.2017.0833

    Article  Google Scholar 

  47. Rubani Q, Gupta SH, Pani S, Kumar A (2019) Design and analysis of a terahertz antenna for wireless body area networks. Optik 179:684–690. https://doi.org/10.1016/j.ijleo.2018.10.202

    Article  Google Scholar 

  48. Rabbani MS, Ghafouri-Shiraz H (2017) Liquid crystalline polymer substrate based THz microstrip antenna arrays for medical applications. IEEE Antennas Wireless Propag Lett 16:1533–1536. https://doi.org/10.1109/LAWP.2017.2647825

    Article  Google Scholar 

  49. Gurnoor Singh Brar, Vatanjeet Singh and Ekambir Sidhu (2016) Stacked decagon shaped THz microstrip patch antenna design for detection of GaAs semi-conductor properties. International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT) International Institute of Information Technology (I2IT), Pune. https://doi.org/10.1109/ICACDOT.2016.7877691

  50. Zhong J-Y, Lin W-J, Cheng J-H, Kung Y-H, Chen J-P, Tsai J-H (2019) A high spectral efficiency receiver at 57–66 GHz using 65-nm CMOS in LTCC package with Polarization MIMO. IEEE Access 7:129466–129479. https://doi.org/10.1109/ACCESS.2019.2938845

    Article  Google Scholar 

  51. Cheema HM, Shamim A (2013) The last barrier: on-chip antennas. IEEE Microwave Mag 14(1):79–91. https://doi.org/10.1109/MMM.2012.2226542

    Article  Google Scholar 

  52. Burasa P, Djerafi T, Constantin NG, Ke Wu (2017) On-chip dual-band rectangular slot antenna for single-chip millimeter-wave identification tag in standard CMOS technology. IEEE Trans Antennas Propag 65(8):3858–3868. https://doi.org/10.1109/TAP.2017.2710215

    Article  Google Scholar 

  53. Jalili H, Momeni O (2017) 17.10 A 318-to-370GHz standing-wave 2D phased array in 0.13µm BiCMOS. 2017 IEEE International Solid-State Circuits Conference, pp. 310–311, pp. 2376–8606. https://doi.org/10.1109/ISSCC.2017.7870385

  54. Kong S, Shum KM, Yang C, Gao L, Chan CH (2021) Wide impedance-and gain-bandwidth terahertz on-chip antenna with chip-integrated dielectric resonator. IEEE Trans Antennas Propag 69(8):4269–4278. https://doi.org/10.1109/TAP.2021.3060060

    Article  Google Scholar 

  55. Garbacz P (2016) Terahertz imaging – principles, techniques, benefits, and limitations. Problemy Eksploatacji 81–92

  56. Shalaby M, Vicario C, Hauri CP (2015) High-performing nonlinear visualization of terahertz radiation on a silicon charge-coupled device. Nat Commun 6:8439. https://doi.org/10.1038/ncomms9439

    Article  CAS  PubMed  Google Scholar 

  57. El Fatimy A, Myers-Ward RL, Boyd AK, Daniels KM, Kurt Gaskill D, Barbara P (2016) Epitaxial graphene quantum dots for high-performance terahertz bolometers. Nat Nanotechnol 11:335–338. https://doi.org/10.1038/nnano.2015.303

    Article  CAS  PubMed  Google Scholar 

  58. Soumekh M (1999) Synthetic aperture radar signal processing. Wiley, New York

    Google Scholar 

  59. Zhang S (2009) Engineering electromagnetic theory. Science Press, Beijing

    Google Scholar 

  60. Weng Cho Chew (1990) Waves and fields in inhomogeneous media. Van Nostrand Reinhold, New York

    Google Scholar 

  61. Wang G, Qi F, Liu Z, Liu C, Xing C, Ning W (2020) Comparison between back projection algorithm and range migration algorithm in terahertz imaging. IEEE Access 8:18772–18777. https://doi.org/10.1109/ACCESS.2020.2968085

    Article  Google Scholar 

  62. Sheen DM, McMakin DL, Hall TE (2001) Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans Microw Theory Tech 49(9):1581–1592. https://doi.org/10.1109/22.942570

    Article  Google Scholar 

  63. Guo Q, Chang T, Geng G, Jia C, Cui H-L (2016) A high precision terahertz wave image reconstruction algorithm. Sensors 16:1139. https://doi.org/10.3390/s16071139

    Article  PubMed  PubMed Central  Google Scholar 

  64. Ahmed SS, Schiessl A, Schmidt L-P (2009) Multistatic mm-wave imaging with planar 2D-array. German Microwave Conference, Munich, Germany, pp. 1–4. https://doi.org/10.1109/GEMIC.2009.4815908

  65. Chana WL, Charan K, Takhar D, Kelly KF, Baraniuk RG, Mittleman DM (2008) A single-pixel terahertz imaging system based on compressed sensing. Appl Phys Lett 93(12):121105. https://doi.org/10.1063/1.2989126

    Article  CAS  Google Scholar 

  66. Shang Y, Wang X, Sun W, Han P, Ye J, Feng S, Zhang Y (2019) Terahertz image reconstruction based on compressed sensing and inverse Fresnel diffraction. Opt Express 27(10):14725–14735. https://doi.org/10.1364/OE.27.014725

    Article  CAS  PubMed  Google Scholar 

  67. Stantchev RI, Sun B, Hornett SM, Hobson PA, Gibson GM, Padgett MJ, Hendry E (2016) Non-invasive, near-field terahertz imaging of hidden objects using a single-pixel detector. Sci Adv 2(6). https://doi.org/10.1126/sciadv.1600190

  68. Stantchev RI, Phillips DB, Hobson P, Hornett SM, Padgett MJ, Hendry E (2017) Compressed sensing with near-field THz radiation. Optica 4(8):989–992. https://doi.org/10.1364/OPTICA.4.000989

    Article  CAS  Google Scholar 

  69. Xu L-M, Fan W-H, Liu J (2014) High-resolution reconstruction for terahertz imaging. Appl Opt 7891–7897.https://doi.org/10.1364/AO.53.007891

  70. Fosodeder P, Hubmer S, Ploier A, Ramlau R, Van Frank S, Rankl C (2021) Phase-contrast THz-CT for non-destructive testing. Opt Express 29(10):15711–15723. https://doi.org/10.1364/OE.422961

    Article  CAS  PubMed  Google Scholar 

  71. Park SC, Park MK, Kang MG (2003) Super-resolution image reconstruction: a technical overview. IEEE Signal Process Mag 20(3):21–36. https://doi.org/10.1109/MSP.2003.1203207

    Article  Google Scholar 

  72. Elad M, Feuer A (1997) Restoration of a single super resolution image from several blurred, noisy, and under sampled measured images. IEEE Trans Image Process 6(12):1646–1658. https://doi.org/10.1109/83.650118

    Article  CAS  PubMed  Google Scholar 

  73. Borman S, Stevenson RL (1998) Super-resolution from image sequences-a review. Midwest Symposium on Circuits and Systems, IEEE. https://doi.org/10.1109/MWSCAS.1998.759509

  74. Stark H, Oskoui P (1989) High-resolution image recovery from image-plane arrays, using convex projections. J Opt Soc Am A 6(11):1715–1726. https://doi.org/10.1364/JOSAA.6.001715

    Article  CAS  PubMed  Google Scholar 

  75. Li Y, Li L, Hellicar A, Guo YJ (2008) Super-resolution reconstruction of terahertz images. Terahertz Mil Secur Appl VI. 6949. https://doi.org/10.1117/12.777814

  76. Gao H, Li C, Wu S, Fang G (2018) Study of terahertz MIMO imaging with fast reconstruction algorithm. 2018 IEEE MTT-S International Wireless Symposium (IWS). https://doi.org/10.1109/IEEE-IWS.2018.8400832

  77. Yang G, Li C, Gao H, Fang G (2020) Phase shift migration with SIMO superposition for MIMO-side looking imaging at terahertz band. IEEE Access 8:208418–208426. https://doi.org/10.1109/ACCESS.2020.3017617

    Article  Google Scholar 

  78. Yang G, Li C, Shiyou W, Zheng S, Liu X, Fang G (2021) Phase shift migration with modified coherent factor algorithm for MIMO-SAR 3D imaging in THz band. Remote Sens 13(22):4701. https://doi.org/10.3390/rs13224701

    Article  Google Scholar 

  79. Lei T, Tobin B, Liu Z, Yang S-Y, Sun D-W (2021) A terahertz time-domain super-resolution imaging method using a local-pixel graph neural network for biological products. Anal Chim Acta 1181. https://doi.org/10.1016/j.aca.2021.338898

  80. Heimbeck MS, Everitt HO (2020) Terahertz digital holographic imaging. Adv Opt Photon 12(1):1–59. https://doi.org/10.1364/AOP.12.000001

    Article  Google Scholar 

  81. Valzania L, Hack E, Zolliker P, Bronnimann R, Feurer T (2018) Resolution limits of terahertz ptychography. Society of Photo-Optical Instrumentation Engineers (SPIE) Photonics, Proceedings 10677. https://doi.org/10.1117/12.2307157

  82. Rodenburg JM, Faulkner HM (2004) A phase retrieval algorithm for shifting illumination. Appl Phys Lett 85(20):4795–4797. https://doi.org/10.1063/1.1823034

    Article  CAS  Google Scholar 

  83. Rodenburg JM (2008) Ptychography and related diffractive imaging methods. Adv Imaging Electron Phys 150:87–184. https://doi.org/10.1016/S1076-5670(07)00003-1

    Article  Google Scholar 

  84. Valzania L, Feurer T, Zolliker P, Hack E (2018) Terahertz ptychography. Opt Lett 43(3):543–546. https://doi.org/10.1364/OL.43.000543

    Article  CAS  PubMed  Google Scholar 

  85. Seifert J, Bouchet D, Loetgering L, Mosk AP (2021) Efficient and flexible approach to ptychography using an optimization framework based on automatic differentiation. OSA Continuum 4(1):121–128. https://doi.org/10.1364/OSAC.411174

    Article  Google Scholar 

  86. Ge H, Jiang Y, Lian F, Zhang Y (2016) Terahertz spectroscopy investigation of preservative molecules. Optik 127(12):4954–4958. https://doi.org/10.1016/j.ijleo.2016.02.048

    Article  CAS  Google Scholar 

  87. Shin HJ, Sung-Wook C, Ok G (2018) Qualitative identification of food materials by complex refractive index mapping in the terahertz range. Food Chem 245:282–288. https://doi.org/10.1016/j.foodchem.2017.10.056

    Article  CAS  PubMed  Google Scholar 

  88. Ok G, Park K, Kim HJ, Chun HS, Choi S-W (2014) High-speed terahertz imaging toward food quality inspection. Appl Opt 53(7):1406–1412. https://doi.org/10.1364/AO.53.001406

    Article  PubMed  Google Scholar 

  89. Wang K, Sun D-W, Hongbin Pu (2017) Emerging non-destructive terahertz spectroscopic imaging technique: principle and applications in the agri-food industry. Trends Food Sci Technol 67:93–105. https://doi.org/10.1016/j.tifs.2017.06.001

    Article  CAS  Google Scholar 

  90. Yan L, Liu C, Hao Qu, Liu W, Zhang Y, Yang J, Zheng L (2018) Discrimination and measurements of three flavonols with similar structure using terahertz spectroscopy and chemometrics. Journal of Infrared Milli Terahz Waves 39:492–504. https://doi.org/10.1007/s10762-018-0474-6

    Article  CAS  Google Scholar 

  91. Castro-Camus E, Palomar M, Covarrubias AA (2013) Leaf water dynamics of Arabidopsis thaliana monitored in-vivo using terahertz time-domain spectroscopy. Sci Rep 3:2910. https://doi.org/10.1038/srep02910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Leili AH, Akbari E, Toudeshki A, Homayouni T, Alizadeh A, Ehsani R (2020) Terahertz spectroscopy and imaging: a review on agricultural applications. Comput Electron Agric 177:105628. https://doi.org/10.1016/j.compag.2020.105628

    Article  Google Scholar 

  93. Lee D-K, Kim G, Kim C, Jhon YM, Kim JH, Lee T, Son J-H (2016) Ultrasensitive detection of residual pesticides using THz near-field enhancement. IEEE Trans Terahertz Sci Technol 6(3):389–395. https://doi.org/10.1109/TTHZ.2016.2538731

    Article  CAS  Google Scholar 

  94. Nie P, Qu F, Lin L, He Y, Feng X, Yang L, Gao H, Zhao L, Huang L (2021) Trace identification and visualization of multiple benzimidazole pesticide residues on toona sinensis leaves using terahertz imaging combined with deep learning. Int J Mol Sci 22(7). https://doi.org/10.3390/ijms22073425

  95. Lee D-K, Kim G, Son J-H, Seo M (2016) Highly sensitive terahertz spectroscopy of residual pesticide using nano-antenna. Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications IX, International Society for Optics and Photonics, San Francisco, CA, USA. https://doi.org/10.1117/12.2212055

  96. El-Shenawee M, Vohra N, Bowman T, Bailey K (2019) Cancer detection in excised breast tumors using terahertz imaging and spectroscopy. Biomed Spectrosc Imaging 8(1–2):1–9. https://doi.org/10.3233/bsi-190187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Gavdush AA, Chernomyrdin NV, Malakhov KM, Beshplav S-I, Dolganova IN, Kosyrkova AV, Nikitin PV, Musina GR, Katyba GM, Reshetov IV, Cherkasova OP, Komandin GA, Karasik VE, Potapov AA, Tuchin VV, Zaytsev KI (2019) Terahertz spectroscopy of gelatin-embedded human brain gliomas of different grades: a road toward intraoperative THz diagnosis. J Biomed Opt 24(02):1. https://doi.org/10.1117/1.JBO.24.2.027001

    Article  PubMed  Google Scholar 

  98. Vohra N, Bowman T, Diaz PM, Rajaram N, Bailey K, El-Shenawee M (2018) Pulsed terahertz reflection imaging of tumors in a spontaneous model of breast cancer. Biomed Phys Eng Expr 4(6). https://doi.org/10.1088/2057-1976/aae699

  99. Bowman T, El-Shenawee M, Campbell LK (2016) Terahertz transmission vs reflection imaging and model-based characterization for excised breast carcinomas. Biomed Opt Express 7(9):3756–3783. https://doi.org/10.1364/BOE.7.003756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Bowman T, Yuhao Wu, Gauch J, Campbell LK, El-Shenawee M (2017) Terahertz imaging of three-dimensional dehydrated breast cancer tumors. J Infrared Millimeter Terahertz Waves 38:766–786. https://doi.org/10.1007/s10762-017-0377-y

    Article  CAS  Google Scholar 

  101. Bowman T, Chavez T, Khan K, Wu J, Chakraborty A, Rajaram N, Bailey K, El-Shenawee M (2018) Pulsed terahertz imaging of breast cancer in freshly excised murine tumors. J Biomed Opt 23(2). https://doi.org/10.1117/1.JBO.23.2.026004

  102. Bowman TC, El-Shenawee M, Campbell LK (2005) Terahertz imaging of excised breast tumor tissue on paraffin sections. IEEE Trans Antennas Propag 63(5):2088–2097. https://doi.org/10.1109/TAP.2015.2406893

    Article  Google Scholar 

  103. Bowman T, Vohra N, Bailey K, El-Shenaweea M (2019) Terahertz tomographic imaging of freshly excised human breast tissues. J Med Imaging 6(2):23501. https://doi.org/10.1117/1.JMI.6.2.023501

    Article  Google Scholar 

  104. Chavez T, Bowman T, Jingxian Wu, Bailey K, El-Shenawee M (2018) Assessment of terahertz imaging for excised breast cancer tumors with image morphing. J Infrared Millimeter Terahertz Waves 39(12):1283–1302. https://doi.org/10.1007/s10762-018-0529-8

    Article  Google Scholar 

  105. Peng Y, Shi C, Wu X, Zhu Y, Zhuang S (2020) Terahertz imaging and spectroscopy in cancer diagnostics: a technical review. BME Front 2020:1–11, Article ID 2547609. https://doi.org/10.34133/2020/2547609

  106. Grootendorst MR, Fitzgerald AJ, Susan G, de Koning B, Santaolalla A, Portieri A, Van Hemelrijck M, Young MR, Owen J, Cariati M, Pepper M, Wallace VP, Pinder SE, Purushotham A (2017) Use of a handheld terahertz pulsed imaging device to differentiate benign and malignant breast tissue. Biomed Opt Express 8(6):2932–2945. https://doi.org/10.1364/BOE.8.002932

    Article  PubMed  PubMed Central  Google Scholar 

  107. Ji YB, Seung Jae Oh, Kang S-G, Heo J, Kim S-H, Choi Y, Song S, Son HY, Kim SH, Lee JH, Haam SJ, Huh YM, Chang JH, Joo C, Suh J-S (2016) Terahertz reflectometry imaging for low and high grade gliomas. Sci Rep 6(1):1–9. https://doi.org/10.1038/srep36040

    Article  CAS  Google Scholar 

  108. Limin Wu, Degang Xu, Wang Y, Liao B, Zhinan Jiang Lu, Zhao ZS, Nan Wu, Chen T, Feng H, Yao J (2019) Study of in vivo brain glioma in a mouse model using continuous-wave terahertz reflection imaging. Biomed Opt Express 10(8):3953–3962. https://doi.org/10.1364/BOE.10.003953

    Article  Google Scholar 

  109. Cheon H, Yang HJ, Son J-H (2017) Toward clinical cancer imaging using terahertz spectroscopy. IEEE J Sel Top Quantum Electron 23(4):8600109. https://doi.org/10.1109/JSTQE.2017.2704905

    Article  Google Scholar 

  110. Hoshina H, Hayashi A, Miyoshi N, Fukunaga Y, Otani C (2009) Terahertz pulsed imaging of frozen biological tissues. Appl Phys Lett 94:123901. https://doi.org/10.1063/1.3106616

    Article  CAS  Google Scholar 

  111. Son J-H, Seung Jae Oh, Cheon H (2019) Potential clinical applications of terahertz radiation. J Appl Phys 125:190901. https://doi.org/10.1063/1.5080205

    Article  CAS  Google Scholar 

  112. Wallace VP, Fitzgerald AJ, Shankar S, Flanagan N, Pye R, Cluff J, Arnone DD (2004) Terahertz pulsed imaging of basal cell carcinoma ex vivo and in vivo. Br J Dermatol 151(2):424–32. https://doi.org/10.1111/j.1365-2133.2004.06129.x

    Article  CAS  PubMed  Google Scholar 

  113. Oh SJ, Kim S-H, Ji YB, Jeong K, Park Y, Yang J, Park DW, Noh SK, Kang S-G, Huh Y-M, Son J-H, Suh J-S (2014) Study of freshly excised brain tissues using terahertz imaging. Biomed Opt Expr 5(8):2837–2842

    Article  Google Scholar 

  114. Liu Y, Hao L, Meiqiong T, Jiaoqi H, Wei L, Jinying D, Xueping C, Weiling F, Yang Z (2019) The medical application of terahertz technology in non-invasive detection of cells and tissues: opportunities and challenges. RSC Adv 9(17):9354–9363

    Article  Google Scholar 

  115. Bykhovski A, Globus T, Khromova T, Gelmont B, Woolard D (2007) An analysis of the THz frequency signatures in the cellular components of biological agents. Int J High Speed Electron Syst 17(02):225–237. https://doi.org/10.1142/S012915640700445X

    Article  CAS  Google Scholar 

  116. Yang X, Yang Ke, Luo Y, Weiling Fu (2016) Terahertz spectroscopy for bacterial detection: opportunities and challenges. Appl Microbiol Biotechnol 100(12):5289–5299. https://doi.org/10.1007/s00253-016-7569-6

    Article  CAS  PubMed  Google Scholar 

  117. Park SJ, Hong JT, Choi SJ, Kim HS, Park WK, Han ST, Park JY, Lee S, Kim DS, Ahn YH (2014) Detection of microorganisms using terahertz metamaterials. Sci Rep 4:4988. https://doi.org/10.1038/srep04988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Park SJ, Son BH, Choi SJ, Kim HS, Ahn YH (2014) Sensitive detection of yeast using terahertz slot antennas. Opt Express 22(25):30467–30472. https://doi.org/10.1364/OE.22.030467

    Article  CAS  PubMed  Google Scholar 

  119. Park SJ, Cha SH, Shin GA, Ahn YH (2017) Sensing viruses using terahertz nano-gap metamaterials. Biomed Opt Express 8(8):3551–3558. https://doi.org/10.1364/BOE.8.003551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Chen H-T, Padilla WJ, Zide JMO, Gossard AC, Taylor AJ, Averitt RD (2006) Active terahertz metamaterial devices. Nature 444(7119):597–600. https://doi.org/10.1038/nature05343

    Article  CAS  PubMed  Google Scholar 

  121. Chen H-T, Padilla WJ, Averitt RD, Gossard AC, Highstrete C, Lee M, O’Hara JF, Taylor AJ (2008) Electromagnetic metamaterials for terahertz applications. Terahertz Sci Technol 1(1):42–50. https://doi.org/10.1117/12.751613

    Article  CAS  Google Scholar 

  122. Tao Hu, Chieffo LR, Brenckle MA, Siebert SM, Liu M, Strikwerda AC, Fan K, Kaplan DL, Zhang X, Averitt RD, Omenetto FG (2011) Metamaterials on paper as a sensing platform. Adv Mater 23(28):3197–3201. https://doi.org/10.1002/adma.201100163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. O’Hara JF, Withayachumnankul W, Al-Naib I (2012) A review on thin-film sensing with terahertz waves. J Infrared Millimeter Terahertz Waves 33:245–291. https://doi.org/10.1007/s10762-012-9878-x

    Article  Google Scholar 

  124. Tao Hu, Brenckle MA, Yang M, Zhang J, Liu M, Siebert SM, Averitt RD, Mannoor MS, McAlpine MC, Rogers JA, Kaplan DL, Omenetto FG (2012) Silk-based conformal, adhesive, edible food sensors. Adv Mater 24(8):1067–1072. https://doi.org/10.1002/adma.201103814

    Article  CAS  PubMed  Google Scholar 

  125. O’Hara JF, Singh R, Brener I, Smirnova E, Han J, Taylor AJ, Zhang W (2008) Thin-film sensing with planar terahertz metamaterials: sensitivity and limitations. Opt Express 16(3):1786–1795. https://doi.org/10.1364/OE.16.001786

    Article  PubMed  Google Scholar 

  126. Azad AK, Dai J, Zhang W (2006) Transmission properties of terahertz pulses through subwavelength double split-ring resonators. Opt Lett 31(5):634–636. https://doi.org/10.1364/OL.31.000634

    Article  PubMed  Google Scholar 

  127. Menikh A, Mickan SP, Liu H, Maccoll R, Zhang X-C (2004) Label-free amplified bioaffinity detection using terahertz wave technology. Biosens Bioelectron 20:658–62. https://doi.org/10.1016/j.bios.2004.03.006

    Article  CAS  PubMed  Google Scholar 

  128. Xiaojun Wu, Quan B, Pan X, Xinlong Xu, Xinchao Lu, Changzhi Gu, Wang Li (2013) Alkanethiol-functionalized terahertz metamaterial as label-free, highly-sensitive and specific biosensor. Biosens Bioelectron 42:626–631. https://doi.org/10.1016/j.bios.2012.10.095

    Article  CAS  Google Scholar 

  129. Yoon SA, Cha SH, Jun SW, Park SJ, Park J-Y, Lee S, Kim HS, Ahn YH (2020) Identifying different types of microorganisms with terahertz spectroscopy. Biomed Opt Expr 11(1). https://doi.org/10.1364/BOE.376584

  130. Kastek M, Piątkowski T, Dulski R, Chamberland M, Lagueux P, Farley V (2012) Multispectral and hyper spectral measurements of soldier’s camouflage equipment. Proc SPIE 8382:83820K. https://doi.org/10.1117/12.918393

    Article  Google Scholar 

  131. Kowalski M, Kastek M, Palka N, Polakowski H, Szustakowski M, Piszczek M (2013) Investigation of concealed objects detection in visible, infrared and terahertz ranges of radiation. Photon Lett Poland 5(4):167–169. https://doi.org/10.4302/plp.2013.4.16

    Article  Google Scholar 

  132. Kowalski M, Kastek M, Szustakowski M (2014) Concealed objects detection in visible, infrared and terahertz ranges. World Acad Sci Eng Technol Int J Civil Environ Eng 8:10. https://doi.org/10.4302/plp.2013.4.16

    Article  Google Scholar 

  133. Kowalski M (2019) Hidden object detection and recognition in passive terahertz and mid-wavelength infrared. J Infrared Millimeter Terahertz Waves 40:1074–1091. https://doi.org/10.1007/s10762-019-00628-7

    Article  CAS  Google Scholar 

  134. Afsah-Hejri L, Hajeb P, Ara P, Ehsani RJ (2019) A comprehensive review on food applications of terahertz spectroscopy and imaging. Compr Rev Food Sci Food Saf 18. https://doi.org/10.1111/1541-4337.12490

  135. Jordens C, Rutz F, Koch M (2006) Quality assurance of chocolate products with terahertz imaging. 9th European Conference on NDT, Berlin (Germany) (ECNDT)

  136. Shi Y, Chang JS, Esposito CL, Lafontaine C, Berube MJ, Fink JA, Espourteille FA (2011) Rapid screening for pesticides using automated online sample preparation with a high-resolution benchtop orbitrap mass spectrometer. Food Addit Contam 28(10):1383–1392. https://doi.org/10.1080/19440049.2011.590822

    Article  CAS  Google Scholar 

  137. Li B, Cao W, Mathanker S, Zhang W, Wang N (2010) Preliminary study on quality evaluation of pecans with terahertz time-domain spectroscopy. Proc SPIE Int Soc Opt Eng 7854. https://doi.org/10.1117/12.882201

  138. Lee Y-K, Choi S-W, Han S-T, Woo DH, Chun HS (2012) Detection of foreign bodies in foods using continuous wave terahertz imaging. J Food Prot 75(1):179–83. https://doi.org/10.4315/0362-028X.JFP-11-181

    Article  PubMed  Google Scholar 

  139. Wang C, Qin J, Wendao X, Chen M, Xie L, Ying Y (2018) Terahertz imaging applications in agriculture and food engineering: a review. Trans ASABE 61(2):411–424. https://doi.org/10.13031/trans.12201

    Article  CAS  Google Scholar 

  140. Jiang Y, Ge H, Lian F, Zhang Y, Xia S (2016) Early detection of germinated wheat grains using terahertz image and chemometrics. Sci Rep 6:21299. https://doi.org/10.1038/srep21299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Afsharinejad A, Davy A, O'Leary P, Brenann C (2018) Transmission through single and multiple layers of plant leaves at THz frequencies. IEEE Global Communications Conference, pp. 1–6. https://doi.org/10.1109/GLOCOM.2017.8254561

  142. Jordens C, Koch M. Detection of foreign bodies in chocolate with pulsed terahertz spectroscopy. Opt Eng 47(3):037003. https://doi.org/10.1117/1.2896597.

  143. Hiromoto N, Shiba N, Yamamoto K (2013) Detection of a human hair with polarization-dependent THz-time domain spectroscopy. 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), pp. 1–2. https://doi.org/10.1109/IRMMW-THz.2013.6665804

  144. Ok G, Kim HJ, Chu HS, Choi S-W (2014) Foreign-body detection in dry food using continuous sub-terahertz wave imaging. Food Control 42:284–289. https://doi.org/10.1016/j.foodcont.2014.02.021

    Article  Google Scholar 

  145. Yoneyama H, Yamashita M, Kasai S, Ito H, Ouchi T (2007) Application of terahertz spectrum in the detection of harmful food additives. Joint 32nd International Conference on Infrared and Millimeter Waves and the 15th International Conference on Terahertz Electronics. https://doi.org/10.1109/ICIMW.2007.4516498.

  146. Xiao-Li Z, Jiu-Sheng L (2010) Diagnostic techniques of talc powder in flour based on the THz spectroscopy Diagnostic techniques of talc powder in flour based on the THz spectroscopy. Journal of Physics: Conference Series, 3rd International Photonics & Opto Electronics Meetings 276:2–5. https://doi.org/10.1088/1742-6596/276/1/012234

  147. Massaouti M, Daskalaki C, Gorodetsky A, Koulouklidis AD, Tzortzakis S (2013) Detection of harmful residues in honey using terahertz time-domain spectroscopy. Appl Spectrosc 67(1):1264–1269. https://doi.org/10.1366/13-07111

    Article  CAS  PubMed  Google Scholar 

  148. Inamo M, Sakai K, Kiwa T, Tsukada K (2016) Application to non-destructive evaluation of gas barrier films using a high-speed terahertz time-domain spectroscopy. 2016 Progress in Electromagnetic Research Symposium (PIERS), p. 3921. https://doi.org/10.1109/PIERS.2016.7735475

  149. Goryachuk A, Begaeva VA, Khodzitsky MK, Truloff AS (2015) The optical properties and spectral features of malignant skin melanocytes in the terahertz frequency range. J Phys 735. https://doi.org/10.1088/1742-6596/735/1/012073

  150. Qin B, Li Z, Fangrong Hu, Cong Hu, Chen T, Zhang H, Zhao Y (2018) Highly sensitive detection of carbendazim by using terahertz time-domain spectroscopy combined with metamaterial. IEEE Trans Terahertz Sci Technol 8(2):149–154. https://doi.org/10.1109/TTHZ.2017.2787458

    Article  CAS  Google Scholar 

  151. Tan Z, Jun L, Luo J, Xie J (2014) Continuous-wave terahertz imaging applied to detect infestations caused by insects in grain. Adv J Food Sci Technol 6(2):271–274. https://doi.org/10.19026/ajfst.6.23

    Article  Google Scholar 

  152. Afsharinejad A, Davy A, Naftaly M (2017) Variability of terahertz transmission measured in live plant leaves. IEEE Geosci Remote Sens Lett 14(5):636–638. https://doi.org/10.1109/LGRS.2017.2667225

    Article  Google Scholar 

  153. Radhanpura K, Farrant D, Du J (2017) Measurement of agricultural products using terahertz hyperspectral imaging. 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). https://doi.org/10.1109/IRMMW-THz.2017.8066930

  154. Adnan Zahid, Muhammad Imran and Qammer HA (2018) Terahertz sensing at nano-scale for future agriculture. Res Rev: J Bot Sci 7(4). https://doi.org/10.1002/9781119552635.ch11

  155. Heimbeck MS, Ng WR, Golish DR, Gehm ME, Everitt HO (2015) Terahertz digital holographic imaging of voids within visibly opaque dielectrics. IEEE Trans Terahertz Sci Technol 5(1):110–116. https://doi.org/10.1109/TTHZ.2014.2364511

    Article  Google Scholar 

  156. Zhang Y, Wang C, Huai B, Wang S, Zhang Y, Wang D, Rong L, Zheng Y (2021) Continuous-wave THz imaging for biomedical samples. Appl Sci 11(1). https://doi.org/10.3390/app11010071

  157. Rong Lu, Tang C, Wang D, Li B, Tan F, Wang Y, Shi X (2019) Probe position correction based on overlapped object wavefront cross-correlation for continuous-wave terahertz ptychography. Opt Express 27(2):938–950. https://doi.org/10.1364/OE.27.000938

    Article  CAS  PubMed  Google Scholar 

  158. Peng L, Luo C, Wang H, Cheng Y, Yang Q, Liu K (2019) Application of phase retrieval algorithms in terahertz coded aperture imaging. The International Radar Symposium IRS 2019, June 26–28, Germany. https://doi.org/10.23919/IRS.2019.8768124

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed to the study, conception, data collection, data analysis, and interpretations. A literature review and study on design techniques of THz imaging algorithms were written by Vulugundam Anitha. THz imaging applications and the study on implementation were contributed by Ankur Beohar. THz antennas design study and performance comparison were handled by Anveshkumar Nella. All the authors contributed to completing the writing and presentation of the whole manuscript.

Corresponding author

Correspondence to Vulugundam Anitha.

Ethics declarations

Ethics Approval

This work does not contain any studies with human participants or animals performed by any of the authors.

Consent to Participate

Informed consent was obtained from all authors.

Consent for Publication

The authors confirm that there is informed consent to the publication of the data contained in the article.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anitha, V., Beohar, A. & Nella, A. THz Imaging Technology Trends and Wide Variety of Applications: a Detailed Survey. Plasmonics 18, 441–483 (2023). https://doi.org/10.1007/s11468-022-01775-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01775-9

Keywords

Navigation