Skip to main content
Log in

Numerical Demonstration of Photonic Quasi-Crystal Fiber–Surface Plasmonic Resonance Urinary Methanol Sensor

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

This article demonstrates simple germanium-doped solid-core photonic quasi-crystal fiber (PQF) for biochemical sensing applications. The chemically stable thin gold film and eightfold rhombic triacontahedron photonic quasi-crystal structure subsumed in the improved external sensing approach using the finite element method (FEM) tool. The optimized rhombic PQF structure was numerically developed using 14,862 finite mesh elements. The FEM analysis shows high wavelength and amplitude sensitivity, low confinement loss, good figure of merit, high detection accuracy, and reasonable resolution at the refractive index (RI) values from 1.32 to 1.36. Based on the results, this unique rhombic PQF structure has advantages in the high sensitivity with low loss and ease of fabrication among the existing PQF and photonic crystal fiber sensors in biochemical sensing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Availability of Data and Materials

The dataset generated in this study is available from the corresponding author upon reasonable request.

References

  1. Nekoukar Z, Zakariaei Z, Taghizadeh F, Musavi F, Banimostafavi ES, Sharifpour A, Ghuchi NE, Fakhar M, Tabaripour R, Safanavaei S (2021) Methanol poisoning as a new world challenge: A review. Ann Med Surg 66:102445. https://doi.org/10.1016/j.amsu.2021.102445

  2. Ghorbani H, Nezami A, Sheikholeslami B, Hedjazi A, Ahmadimanesh M (2018) Simultaneous measurement of formic acid, methanol and ethanol in vitreous and blood samples of postmortem by head space gc-fid. J Occup Med Toxicol 1:13. https://doi.org/10.1186/s12995-017-0184-3

  3. van den Broek J, Abegg S, Pratsinis SE, Güntner AT (2019) Highly selective detection of methanol over ethanol by a handheld gas sensor. Nat Commun 10:4220. https://doi.org/10.1038/s41467-019-12223-4

  4. Maier SA (2007) Plasmonics: Fundamentals and Applications. Springer, New York

  5. Rifat AA, Ahmed R, Mahdiraji GA, Adikan FRM (2017) Highly sensitive d-shaped photonic crystal fiber-based plasmonic biosensor in visible to near-ir. IEEE Sens J 17(9):2776–2783. https://doi.org/10.1109/JSEN.2017.2677473

    Article  CAS  Google Scholar 

  6. Brückner V (2011) To the Use of Sellmeier Formula vol. 42. Senior Experten Service (SES) Bonn and HfT Leipzig, Germany, pp 242–250

  7. Mitu SA, Aktar M, Ibrahim SM, Ahmed K (2022) Surface plasmon resonance-based refractive index biosensor: an external sensing approach. Plasmonics 17:1581–1592. https://doi.org/10.1007/s11468-022-01645-4

  8. Yanza N, Mayasari RD, Pradana Y, Mulyono AE, Budi AS, Nuryadi R (2019) A change of surface plasmon resonance (spr) characteristics due to fluids type variation as a basic study of biosensor. AIP Conf Proc 2169:060007. https://doi.org/10.1063/1.5132685

  9. Jana J, Ganguly M, Pal T (2016) Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv 89:86174–86211. https://doi.org/10.1039/C6RA14173K

    Article  CAS  Google Scholar 

  10. Zhou X, Cheng T, Li S, Suzuki T, Ohishi Y (2018) Practical sensing approach based on surface plasmon resonance in a photonic crystal fiber. Optica Publishing Group 1:1332–1340. https://doi.org/10.1364/OSAC.1.001332

    Article  CAS  Google Scholar 

  11. Hasan MR, Akter S, Rifat AA, Rana S, Ahmed K, Ahmed R, Subbaraman H, Abbott D (2018) spiral photonic crystal fiber-based dual-polarized surface plasmon resonance biosensor. IEEE Sens J 18:711020. https://doi.org/10.1109/JSEN.2017.2769720

  12. Jabir JN, Areebi NA (2022) High sensitively of double-core surface plasmon resonance biosensor based on photonic crystal fiber. Opt Quant Electron 54. https://doi.org/10.1007/s11082-022-03950-y

  13. Jain S, Choudhary K, Kumar S (2022) Photonic crystal fiber-based spr sensor for broad range of refractive index sensing applications. Opt Fiber Technol 73:103030. https://doi.org/10.1016/j.yofte.2022.103030

  14. Dash JN, Jha R (2014) Graphene-based birefringent photonic crystal fiber sensor using surface plasmon resonance. IEEE Photon Technol Lett 26:1092–1095. https://doi.org/10.1109/LPT.2014.2315233

    Article  CAS  Google Scholar 

  15. Prabhakar G, Peer A, Kumar A, Rastogi V (2012) Finite element analysis of solid-core photonic crystal fiber. In: 2012 Students Conference on Engineering and Systems, pp 1–5. https://doi.org/10.1109/SCES.2012.6199068

  16. Polycarpou AC (2006) Introduction to the Finite Element Method in Electromagnetics, p 115. https://doi.org/10.1007/978-3-031-01689-9

  17. Kumar S, Singh R, Zhu G, Yang Q, Zhang X, Cheng S, Zhang B, Kaushik BK, Liu F-Z (2020) Development of uric acid biosensor using gold nanoparticles and graphene oxide functionalized micro-ball fiber sensor probe. IEEE Trans Nanobiosci 19:173–182. https://doi.org/10.1109/TNB.2019.2958891

    Article  Google Scholar 

  18. Ayyanar N, Raja GT, Skibina YS, Monfared YE, Zanishevskaya AA, Shuvalov AA, Gryaznov AY (2022) Hollow-core microstructured optical fiber based refractometer: Numerical simulation and experimental studies. IEEE Trans NanoBiosci 21:194–198. https://doi.org/10.1109/TNB.2022.3144313

  19. Wu T, Shao Y, Wang Y, Cao S, Cao W, Zhang F, Liao C, He J, Huang Y, Hou M, Wang Y (2017) Surface plasmon resonance biosensor based on gold-coated side-polished hexagonal structure photonic crystal fiber. Opt Express 25(17):20313–20322. https://doi.org/10.1364/OE.25.020313

    Article  CAS  PubMed  Google Scholar 

  20. Wang G, Lu Y, Duan L, Yao J (2021) A refractive index sensor based on pcf with ultra-wide detection range. IEEE J Sel Top Quantum Electron 27(4):1–8. https://doi.org/10.1109/JSTQE.2020.2993866

    Article  PubMed  Google Scholar 

  21. Islam MR, Iftekher ANM, Noor F et al (2022) AZO-coated plasmonic PCF nanosensor for blood constituent detection in near-infrared and visible spectrum. Appl Phys A 128:86. https://doi.org/10.1007/s00339-021-05220-2

  22. Mitu SA, Ahmed K, Zahrani FAA, Grover A, Mani Rajan MS, Moni MA (2021) Development and analysis of surface plasmon resonance based refractive index sensor for pregnancy testing. Opt Lasers Eng 140:106551. https://doi.org/10.1016/j.optlaseng.2021.106551

  23. Kamiya (2018) Discovery of superconductivity in quasicrystal. Nat Commun 154(9). https://doi.org/10.1038/s41467-017-02667-x

  24. Sivacoumar (2015) Fivefold symmetric photonic quasi-crystal fiber for dispersion compensation from s- to l-band and optimized at 1.55 \(\mu\)m. Adv OptoElectronics 417401:7. https://doi.org/10.1155/2015/417401

  25. Revathi S, Inabathini SR, Pal J (2015) Pressure and temperature sensor based on a dual core photonic quasi-crystal fiber. Optik 126(22):3395–3399. https://doi.org/10.1016/j.ijleo.2015.07.141

    Article  CAS  Google Scholar 

  26. Yan X, Wang Y, Cheng T, Li S (2021) Photonic crystal fiber spr liquid sensor based on elliptical detective channel. Micromachines (Basel) 7(12):408. https://doi.org/10.3390/mi12040408

  27. Liu Q, Ren Z, Liu W, Sun Y, Lv T, Liu C, Lu W, Li B, Jiang Y, Sun T, Chu PK (2021) A photonic quasi-crystal fiber composed of circular air holes with high birefringence and low confinement loss. Optik 231:166497. https://doi.org/10.1016/j.ijleo.2021.166497

  28. Ahmed K, Islam MI, Paul BK, Islam MS, Sen S, Chowdhury S, Uddin MS, Asaduzzaman S, Bahar AN (2017) Effect of photonic crystal fiber background materials in sensing and communication applications. Mater Discov 7:8–14. https://doi.org/10.1016/j.md.2017.05.002

    Article  Google Scholar 

  29. Madhavan P, Thamizharasi V, Kumar MR, Kumar AS, Jabin MA, Sampathkumar A (2019) Numerical investigation of temperature dependent water infiltrated d shaped dual core photonic crystal fiber (d-dc-pcf) for sensing applications. Results Phys 13(April):102289. https://doi.org/10.1016/j.rinp.2019.102289

  30. Johnson PB, Christy RW (1972) Optical constants of the noble metals. Phys Rev B 6:4370–4379. https://doi.org/10.1103/PhysRevB.6.4370

    Article  CAS  Google Scholar 

  31. Manickam SRP (2022) Numerical investigation of side-polished spr pcf sensor for urine analysis. Plasmonics 17:2023–2030. https://doi.org/10.1007/s11468-022-01688-7

    Article  CAS  Google Scholar 

  32. Shafkat A (2020) Analysis of a gold coated plasmonic sensor based on a duplex core photonic crystal fiber. Sens Bio-Sens Res 28:100324. https://doi.org/10.1016/j.sbsr.2020.100324

  33. Liu Q, Sun J, Sun Y, Ren Z, Liu C, Lv J, Wang F, Wang L, Liu W, Sun T, Chu PK (2020) Surface plasmon resonance sensor based on photonic crystal fiber with indium tin oxide film. Opt Mater 102:109800, ISSN 0925-3467. https://doi.org/10.1016/j.optmat.2020.109800

  34. Momota MR, Hasan MR (2018) Hollow-core silver coated photonic crystal fiber plasmonic sensor. Opt Mater 76:287–294. https://doi.org/10.1016/j.optmat.2017.12.049

    Article  CAS  Google Scholar 

  35. Yakubovsky DI, Arsenin AV, Stebunov YV, Fedyanin DY, Volkov VS (2017) Optical constants and structural properties of thin gold films. Opt Express 21:16–25. https://doi.org/10.1364/OE.25.025574

  36. Ciesielski A, Skowronski L, Trzcinski M, Szoplik T (2017) Controlling the optical parameters of self-assembled silver films with wetting layers and annealing. Appl Surf Sci 421:349–356. https://doi.org/10.1016/j.apsusc.2017.01.039

    Article  CAS  Google Scholar 

  37. Wiederhecker G, Cordeiro C (2007) Field enhancement within an optical fibre with a subwavelength air core. Nature Photon 1:115–118. https://doi.org/10.1038/nphoton.2006.81

  38. Cucinotta A (2012) Photonic Crystal Fiber: Theory and fabrication, photonic bandgap structures novel technological platforms for physical, chemical and biological sensing. Bentham Science Publisher 1:84. https://doi.org/10.2174/978160805448011201010084

    Article  Google Scholar 

  39. Russell PSJ (2003) Photonic crystal fibers. American Association for the Advancement of Science 299:358–362. https://doi.org/10.1126/SCIENCE.1079280

    Article  CAS  Google Scholar 

  40. Kheirandish A, Sepehri Javan N, Mohammadzadeh H (2020) Modified Drude model for small gold nanoparticles surface plasmon resonance based on the role of classical confinement. Sci Rep 10:6517. https://doi.org/10.1038/s41598-020-63066-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dash JN, Das R, Jha R (2018) Azo coated microchannel incorporated pcf-based spr sensor: A numerical analysis. IEEE Photon Technol Lett 30(11):1032–1035. https://doi.org/10.1109/LPT.2018.2829920

    Article  CAS  Google Scholar 

  42. Parthiban M, Revathi S (2022) Effect of thin gold film in plasmonic based liquid infiltrates photonic crystal fiber chemical sensor:design and analysis. In: 2022 IEEE International Conference on Nanoelectronics, Nanophotonics, Nanomaterials, Nanobioscience & Nanotechnology (5NANO), pp 1–5. https://doi.org/10.1109/5NANO53044.2022.9828920

  43. Yang X, Lu Y, Liu B, Yao J (2017) Analysis of graphene-based photonic crystal fiber sensor using birefringence and surface plasmon resonance. Plasmonics 12(2):489–496. https://doi.org/10.1007/s11468-016-0289-z

    Article  CAS  Google Scholar 

  44. Hasan MR, Akter S, Rifat AA, Rana S, Ali S (2017) A highly sensitive gold-coated photonic crystal fiber biosensor based on surface plasmon resonance. Photonics 4(1)

  45. Dash JN, Jha R (2014) Spr biosensor based on polymer pcf coated with conducting metal oxide. IEEE Photon Technol Lett 26:595–598

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

All the authors contributed equally to this study.

Corresponding author

Correspondence to Revathi Senthil.

Ethics declarations

Ethics Approval

This study complies with ethical standards

Conflict of Interest

The author declares no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Manickam, P., Senthil, R. Numerical Demonstration of Photonic Quasi-Crystal Fiber–Surface Plasmonic Resonance Urinary Methanol Sensor. Plasmonics 18, 511–519 (2023). https://doi.org/10.1007/s11468-022-01768-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01768-8

Keywords

Navigation