Skip to main content

Advertisement

Log in

Silver Nanoparticles Amplified Visible and Infrared Photoluminescence Features of Er3+ Ions Activated in Borate Glasses

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Rare earth (RE)–doped glasses with high quantum efficiency and strong photoluminescence (PL) characteristics are essential for next generation photonic and optoelectronic devices. To attain strong PL emission and related attributes of Er3+-doped in glass system, the silver nanoparticles (NPs) were embedded. UV-Vis absorption and microscopic measurements divulged the existence of metallic silver NPs. The PL emission of Er3+-doped in titled glasses was improved in visible and infrared spectral ranges as AgNO3 concentration escalated to higher level. In addition, the quantum efficiency also enhanced as the AgNO3 doping level escalated to a higher level. The enhancements in PL emission intensity and quantum efficiency were ascribed to the local field induced by surface plasmons of Ag NPs. The outcomes suggest that the high concentration of Ag NPs routed in Er3+-doped glass system is useful in fabricating the optical amplifiers and solid-state lasers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Research Data Policy and Data Availability

The authors declare that the data supporting the findings of this study are available within the article. The raw data that support the findings are available on request from the corresponding author.

References

  1. Gushiken NK, Paganoto GT, Temperini MLA, Teixeira FS, Salvadori MC (2020) ACS Omega 5:10366–10373

    Article  CAS  Google Scholar 

  2. Sendova M, Jiménez JA (2012) J Phys Chem C 116:17764–17772

    Article  CAS  Google Scholar 

  3. Richter K, Campbell PS, Baecker T, Schimitzek A, Yaprak D, Mudring AV (2013) Phys Status Solidi 250:1152–1164

    Article  CAS  Google Scholar 

  4. Malekzad H, Sahandi Zangabad P, Mirshekari H, Karimi M, Hamblin MR (2017) Nanotechnol Rev 6:301–329

    Article  CAS  Google Scholar 

  5. Han X, Xu K, Taratula O, Farsad K (2019) Nanoscale 11:799–819

    Article  CAS  Google Scholar 

  6. Camelio S, Babonneau D, Vandenhecke E, Louarn G, Humbert B (2021) Nanoscale Adv 3:6719–6727

    Article  CAS  Google Scholar 

  7. Kumar P, Mathpal MC, Prakash J, Jagannath G, Roos WD, Swart HC (2020) Mater Res Bull 125:110799

    Article  CAS  Google Scholar 

  8. Da Silva DS, De Assumpção TAA, Kassab LRP, De Araújo CB (2014) J Alloys Compd 586:S516–S519

    Article  Google Scholar 

  9. Jagannath G, Eraiah B, Jayanthi K, Keshri SR, Som S, Vinitha G, Pramod AG, Krishnakanth KN, Devarajulu G, Balaji S, Rao SV, Annapurna K, Das S, Allu AR (2020) Phys Chem Chem Phys 22:2019–2032

    Article  CAS  Google Scholar 

  10. Som T, Karmakar B (2010) Plasmonics 5:149–159

    Article  CAS  Google Scholar 

  11. De Araújo CB, Kassab LRP (2016) in: Glas. Nanocomposites Synth Prop Appl pp 131–144

  12. Wu Y, Shen X, Dai S, Xu Y, Chen F, Lin C, Xu T (2011) J Phys Chem C 115:25040–25045

    Article  CAS  Google Scholar 

  13. Liu J, Wang Q, Sang X, Hu H, Li S, Zhang D, Liu C, Wang Q, Zhang B, Wang W, Song F (2021) Nanomaterials 11:1037

    Article  CAS  Google Scholar 

  14. Li J, Wei R, Liu X, Guo H (2012) Opt Express 20:10122–10127

    Article  CAS  Google Scholar 

  15. Malta OL, Santa-Cruz PA, Desa GF, Auzel F (1985) J Lumin 33:261–272

    Article  CAS  Google Scholar 

  16. Mariano D, Reyes L, Kassab P, Lüthi SR, De Araújo CB, Anderson SL, José M, Bell V (2007) Appl Phys Lett 90:081913

    Article  Google Scholar 

  17. Dousti MR, Sahar MR, Ghoshal SK, Amjad RJ, Arifin R (2013) J Mol Struct 1033:79–83

    Article  Google Scholar 

  18. Qi J, Xu T, Wu Y, Shen X, Dai S, Xu Y (2013) Opt Mater 35:2502–2506

    Article  CAS  Google Scholar 

  19. Soltani I, Hraiech S, Horchani-Naifer K, Massera J, Petit L, Férid M (2016) J Non Cryst Solids 438:67–73

    Article  CAS  Google Scholar 

  20. Rajaramakrishna R, Ruangtaweep Y, Sangwaranatee N, Kaewkhao J (2019) J Non Cryst Solids 521:119522

    Article  CAS  Google Scholar 

  21. Gao G, Wei J, Shen Y, Peng M, Wondraczek L (2014) J Mater Chem C 2:8678–8682

    Article  CAS  Google Scholar 

  22. Fatima N, Pramod AG, Jagannath G, Rajaramakrishna R, Keshavamurthy K, Ramesh P, Sathish KN, Alhuthali AMS, Sayyed MI, Hegde V, Rao SV, Nadaf YF (2021) Ceram Int 47:16801–16808

    Article  CAS  Google Scholar 

  23. Ramesh P, Gangareddy J, Sathish KN, Pramod AG, Hegde V, Pasha UM, Khan S, Annapurna K, Sayyed MI, Alhuthali AMS, Agarkov DA, Kokila MK (2021) Opt Mater 114:110933

    Article  CAS  Google Scholar 

  24. Sasai J, Hirao K (2001) J Appl Phys 89:4548

    Article  CAS  Google Scholar 

  25. Fares H, Elhouichet H, Gelloz B, Férid M (2014) J Appl Phys 116:123504

    Article  Google Scholar 

  26. Gelija D, Kadathala L, Borelli DPR (2018) Opt Mater 78:172–180

    Article  CAS  Google Scholar 

  27. Swetha BN, Devarajulu G, Keshavamurthy K, Jagannath G, Deepa HR (2021) J Alloys Compd 856:158212

    Article  CAS  Google Scholar 

  28. Manzani D, Marega E, Nunes LAO, Osorio SPA, Rivera VAG, Ledemi Y, Messaddeq Y (2010) Opt Express 18:25321–25328

    Article  Google Scholar 

  29. Rivera VAG, Ledemi Y, Osorio SPA, Manzani D, Ferri FA, Ribeiro SJL, Nunes LAO, Marega E (2013) J Non Cryst Solids 378:126–134

    Article  CAS  Google Scholar 

  30. Qi Y, Zhou Y, Wu L, Yang F, Peng S, Zheng S, Yin D (2014) J Lumin 153:401–407

    Article  CAS  Google Scholar 

  31. Som T, Karmakar B (2009) J Appl Phys 105(1–8):013102

    Article  Google Scholar 

  32. Gangareddy J, Bheemaiah E, Gandhiraj V, James JT, Jose JK, Katturi Naga K, Soma VR (2018) Appl Phys B Lasers Opt 124

    CAS  Google Scholar 

  33. Jagannath G, Eraiah B, NagaKrishnakanth K, Rao SV (2018) J Non Cryst Solids 482:160–169

    Article  CAS  Google Scholar 

  34. Judd BR (1962) Phys Rev 127:750–761

    Article  CAS  Google Scholar 

  35. Ofelt GS (1962) J Chem Phys 37:511–520

    Article  CAS  Google Scholar 

  36. Serqueira EO, De Morais RF, Dantas NO (2013) J Alloys Compd 560:200–207

    Article  CAS  Google Scholar 

  37. Yang J, Dai S, Zhou Y, Wen L, Hu L, Jiang Z (2002) J Appl Phys 93:977

    Article  Google Scholar 

  38. Jlassi I, Elhouichet H, Ferid M, Barthou C (2010) J Lumin 130:2394–2401

    Article  CAS  Google Scholar 

  39. Mechergui I, Fares H, Mohamed SA, Nalin M, Elhouichet H (2017) J Lumin 190:518–524

    Article  CAS  Google Scholar 

  40. OSA Tech. Dig. (Optica Publ. Group, 1990) (1990)

  41. Fares H, Stambouli W, Elhouichet H, Gelloz B, Férid M (2016) RSC Adv 6:31136–31145

    Article  CAS  Google Scholar 

  42. Caetano M, Silva ACA, Filho JCS, De Morais RF, Sales TO, Andrade AA, Dantas NO (2020) J Lumin 228:117599

    Article  CAS  Google Scholar 

  43. Aouaini F, Maaoui A, Mohamed NBH, Alanazi MM, El Maati LA (2022) J Alloys Compd 894:162506

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Funding

This research was funded by the Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2022R57), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

Author information

Authors and Affiliations

Authors

Contributions

Kempaiah Keshavamurthy: conceptualization, data curation, writing—original draft and editing, Gangareddy Jagannath: methodology, conceptualization, formal analysis, writing—review and editing, Dalal Abdullah Aloraini: data curation, writing—review and editing, Aljawhara H Almuqrin: data curation, M.I. Sayyed: writing—review and editing, K. N. Sathish: writing—review and editing, and P. Ramesh: conceptualization, formal analysis, writing—review and editing.

Corresponding authors

Correspondence to Gangareddy Jagannath or P. Ramesh.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavamurthy, K., Jagannath, G., Aloraini, D.A. et al. Silver Nanoparticles Amplified Visible and Infrared Photoluminescence Features of Er3+ Ions Activated in Borate Glasses. Plasmonics 18, 175–182 (2023). https://doi.org/10.1007/s11468-022-01736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01736-2

Keywords

Navigation