Skip to main content
Log in

Design of a Perovskite Plasmonic Nanolaser Based on Graphene

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

We designed a novel perovskite plasmonic nanolaser based on a semiconductor–graphene–insulator–metal (SGIM) structure in the visible region, and the graphene is placed between an inorganic CsPbBr3 nanowire and a semi-circular silver ridge substrate deposited with silicon dioxide (SiO2). Based on the finite element method, the influences of the graphene thickness and CsPbBr3 nanowire radius on the mode characteristics and electric field distribution of the hybrid plasmonic waveguide were investigated. We obtained the optimal structure parameter of the hybrid plasmonic waveguide, which could achieve a low gain threshold of 0.72 μm−1 in the visible region. Furthermore, compared to a gold or copper bridge substrate, the plasmonic waveguide based on the sliver bridge substrate exhibited a smaller propagation loss and larger propagation distance, leading to a lower gain threshold. This work provides us a novel method for developing applications of nanolasers in the visible region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

All data in this study are available from the corresponding author on reasonable request.

References

  1. Oulton RF, Sorger VJ, Zentgraf T, Ma RM, Gladden C, Dai L, Bartal G, Zhang X (2009) Plasmon lasers at deep subwavelength scale. Nature 461:629–632

    Article  CAS  Google Scholar 

  2. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP (2008) Biosensing with plasmonic nanosensors. Nat Mater 7(6):442–453

    Article  CAS  Google Scholar 

  3. Ma RM, Oulton RF (2019) Applications of nanolasers. Nat Nanotechnol 14(1):12–22

    Article  CAS  Google Scholar 

  4. Azzam SI, Kildishev AV, Ma RM, Ning CZ, Oulton R, Shalaev VM, Stockman MI, Xu JL, Zhang X (2020) Ten years of spasers and plasmonic nanolasers. Light-Sci Appl 9(1):90

    Article  CAS  Google Scholar 

  5. Zimmler MA, Bao J, Capasso F, Müller S, Ronning C (2008) Laser action in nanowires: observation of the transition from amplified spontaneous emission to laser oscillation. Appl Phys Lett 93(5):051101

    Article  Google Scholar 

  6. Grosshans F, Van Assche G, Wenger J, Brouri R, Cerf NJ, Grangier P (2003) Quantum key distribution using Gaussian modulated coherent states. Nature 421(6920):238–241

    Article  CAS  Google Scholar 

  7. Johnson JC, Choi HJ, Knutsen KP, Schaller RD, Yang P, Saykally RJ (2002) Single gallium nitride nanowire lasers. Nat Mater 1(2):106–110

    Article  CAS  Google Scholar 

  8. Basumatary B, Podder S, Thakur S, Bora J, Sharma B, Borah SM, Adhikary NC, Patil DS, Pal AR (2022) Synergistic effect of Au interband transition on graphene Oxide/ZnO heterostructure: experimental analysis with FDTD simulation. ACS Omega 7(9):7662–7674

    Article  CAS  Google Scholar 

  9. Yao Y, Kats MA, Genevet P, Yu N, Song Y, Kong CF (2013) Broad electrical tuning of graphene-loaded plasmonic antennas. Nano Lett 13(3):1257–1264

    Article  CAS  Google Scholar 

  10. Wu D, Tian J, Yang R (2018) Study of mode performances of graphene-coated nanowire integrated with triangle wedge substrate. J Nonlinear Opt Phys 27(02):1850013

    Article  CAS  Google Scholar 

  11. Zhu J, Xu Z, Hu C (2018) Tunable plasmonic nanolaser based on graphene. Plasmonics 13(6):2125–2132

    Article  CAS  Google Scholar 

  12. Sadaghiani VK, Zavvari M, Tavakkoli MB, Horri A (2019) Design of graphene-based hybrid waveguides for nonlinear applications. Opt Quant Electron 51(2):49

    Article  Google Scholar 

  13. Li H, Li JH, Hong KB, Yu MW, Chung YC, Hsu CY, Yang JH, Cheng CW, Huang ZT, Chen TR, Lin KP, Gwo S, Lu TC (2019) Plasmonic nanolasers enhanced by hybrid graphene-insulator-metal structures. Nano Lett 19(8):5017–5024

    Article  CAS  Google Scholar 

  14. Wu J, Guo S, Li Z, Li X, Xue H, Wang Z (2020) Graphene hybrid surface plasmon waveguide with low loss transmission. Plasmonics 15(6):1621–1627

    Article  CAS  Google Scholar 

  15. He X, Ning T, Pei L, Zheng J, Li J, Wang J (2021) Deep subwavelength graphene-dielectric hybrid plasmonic waveguide for compact photonic integration. Results Phys 21:103834

    Article  Google Scholar 

  16. Huang CC, Chang RJ, Cheng CW (2021) Ultra-low-loss mid infrared plasmonic waveguides based on multilayer graphene metamaterials. Nanomaterials 11(11):2981

    Article  CAS  Google Scholar 

  17. Wang S, Chen HZ, Ma RM (2018) High performance plasmonic nanolasers with external quantum efficiency exceeding 10%. Nano Lett 18(12):7942–7948

    Article  CAS  Google Scholar 

  18. Xu L, Li F, Liu S, Yao F, Liu Y (2018) Low threshold plasmonic nanolaser based on graphene. Appl Sci 8(11):2186

    Article  CAS  Google Scholar 

  19. Lu YJ, Wang CY, Kim J, Chen HY, Lu MY, Chen YC, Chang WH, Chen LJ, Stockman MI, Shih CK, Gwo S (2014) All-color plasmonic nanolasers with ultralow thresholds: autotuning mechanism for single-mode lasing. Nano Lett 14(8):4381–4388

    Article  CAS  Google Scholar 

  20. Ahmed S, Jannat F, Khan MA, Alim MA (2021) Numerical development of eco-friendly Cs2TiBr 6 based perovskite solar cell with all-inorganic charge transport materials via SCAPS-1D. Optik 225:165765

    Article  CAS  Google Scholar 

  21. Shang Q, Zhang S, Liu Z, Chen J, Yang P, Li C, Li W, Zhang Y, Xiong Q, Liu X, Zhang Q (2018) Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett 18(6):3335–3343

    Article  CAS  Google Scholar 

  22. Hsieh YH, Hsu BW, Peng KN, Lee KW, Chu CW, Chang SW, Lin HW, Yen TJ, Lu YJ (2020) Perovskite quantum dot lasing in a gap-plasmon nanocavity with ultralow threshold. ACS Nano 14(9):11670–11676

    Article  CAS  Google Scholar 

  23. Zhu L (2010) Modal properties of hybrid plasmonic waveguides for nanolaser applications. IEEE Photonics Technol Lett 22(8):535–537

    Article  Google Scholar 

  24. Li Z, Piao R, Zhao J, Meng X, Li W, Niu L, Gu E (2015) Deep-subwavelength hybrid plasmonic waveguide with metal-semiconductor ribs for nanolaser applications. J Opt 17(12):125008

    Article  Google Scholar 

  25. Wei W, Zhang X, Ren X (2014) Asymmetric hybrid plasmonic waveguides with centimeter-scale propagation length under subwavelength confinement for photonic components. Nanoscale Res Lett 9(1):599

    Article  Google Scholar 

  26. Huang Q, Bao F, He S (2013) Nonlocal effects in a hybrid plasmonic waveguide for nanoscale confinement. Opt Express 21(2):1430–1439

    Article  CAS  Google Scholar 

  27. Zhang J, Cai L, Bai W, Xu Y, Song G (2011) Hybrid plasmonic waveguide with gain medium for lossless propagation with nanoscale confinement. Opt Lett 36(12):2312–2314

    Article  CAS  Google Scholar 

  28. Bian Y, Zheng Z, Liu Y, Zhu J, Zhou T (2011) Coplanar plasmonic nanolasers based on edge-coupled hybrid plasmonic waveguides. IEEE Photonics Technol Lett 23(13):884–886

    Article  CAS  Google Scholar 

  29. Zhu J, Xu Z (2019) Novel SPP nanolaser with two modes of electromagnetic for optoelectronic integration device. Plasmonics 14(5):1295–1302

    Article  CAS  Google Scholar 

  30. Liu Y, Li F, Xu C, He Z, Gao J, Zhou Y, Xu L (2021) The design and research of a new hybrid surface plasmonic waveguide nanolaser. Materials 14(9):2230

    Article  CAS  Google Scholar 

  31. Huang Z, Wang J, Liu Z, Xu G, Cao B, Wang C, Xu K (2014) Nanoscale active hybrid plasmonic laser with a metal-clad metal-insulator-semiconductor square resonator. J Opt Soc Am B 31(7):1422–1429

    Article  CAS  Google Scholar 

  32. Li ZQ, Piao RQ, Zhao JJ, Meng XY, Tong K (2015) A low-threshold nanolaser based on hybrid plasmonic waveguides at the deep subwavelength scale. Chin Phys B 24(7):077303

    Article  Google Scholar 

  33. Gwo S, Shih CK (2016) Semiconductor plasmonic nanolasers: current status and perspectives. Rep Prog Phys 79(8):086501

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (52177225, 61605105, 51802184); the Young Talent Fund of University Association for Science and Technology in Shaanxi (20200113); the China Postdoctoral Science Foundation (2019M653635); and the Scientific Research Plan Projects of Shaanxi Education Department (20JG003).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the conception and design. Shuya Ning, writing and result analysis. Fan Duan, methodology and writing. Naming Zhang, resources and funding. Zhihui Liu and Shuo Wang, validation and data curation. Tao Xue, investigation and resources.

Corresponding author

Correspondence to Naming Zhang.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ning, S., Duan, F., Zhang, N. et al. Design of a Perovskite Plasmonic Nanolaser Based on Graphene. Plasmonics 17, 2123–2130 (2022). https://doi.org/10.1007/s11468-022-01701-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-022-01701-z

Keywords

Navigation