Skip to main content
Log in

The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell

  • Published:
Plasmonics Aims and scope Submit manuscript

A Correction to this article was published on 07 March 2022

This article has been updated

Abstract

Nanostructures exhibit excellent antireflection (AR) properties allowing for broadband antireflection and increasing the light incoupling in solar cells. In this paper, the optical effect of different nanostructures on the front side of an organic–inorganic halide perovskite semiconductor solar cell is studied. The transfer matrix optical simulation method (TMM) will be used to model and simulate the solar cell while using the effective medium theory (EMT) to model the effective refractive indices of the nanostructures. By optimizing the height of each nanostructure, it was found that the moth-eye nanostructure had the best performance, reducing the reflection by ~ 7.8%, thus enhancing the optical current density by ~ 13.5% and increasing the overall efficiency by 2.22%. Additional optical analysis methods were used to analyze and characterize the effect of the added AR nanostructures such as the solar-weighted reflectance (SWE), the solar absorptance enhancement (SWR), current density loss analysis (\({J}_{\mathrm{loss}}\)), and finally, the spectral photovoltaic output (SPV).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Custom made transfer matrix method code.

Change history

References

  1. Paudyal BR, Shakya SR, Paudyal DP, Das Mulmi D (2017) Soiling-induced transmittance losses in solar PV modules installed in Kathmandu Valley, Renew. Wind Water Sol 4-5

  2. Battaglia C, Cuevas A, De Wolf S (2016) High-efficiency crystalline silicon solar cells: status and perspectives. Energy Environ Sci 9:1552–1576

    Article  CAS  Google Scholar 

  3. Shahverdi N, Yaghoubi M, Goodarzi M, Soleamani A (2019) Optimization of anti-reflection layer and back contact of perovskite solar cell. Sol Energy 189:111–119

    Article  CAS  Google Scholar 

  4. NREL Best Research-Cell Efficiencies (2018) https://www.nrel.gov/pv/assets/images/best-research-cell-efficiencies.20200406.png (last accessed on July 3rd, 2020)., (n.d.).

  5. Swanson RM (2005) Approaching the 29% limit efficiency of silicon solar cells, in Thirty-First IEEE Photovoltaic Specialists Conference (IEEE, 2005) 889–894.

  6. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED (2016) Solar cell efficiency tables (version 47). Prog Photovolt Res Appl 24:3–11

    Article  Google Scholar 

  7. Richter A, Hermle M, Glunz S (2013) Reassessment of the limiting efficiency for crystalline silicon solar cells. IEEE J Photovolt 3:1184–1191

    Article  Google Scholar 

  8. Green MA, Emery K, Hishikawa Y, Warta W, Dunlop ED, Levi DH, Ho-Baillie AWY (2017) Solar cell efficiency tables (version 49). Prog Photovolt Res Appl 25:3–13

    Article  Google Scholar 

  9. Andrew Burger Industrial chimera or evolutionary leap: perovskite solar cells and cheap, ubiquitous solar energy, https://solarmagazine.com/perovskite-solar-cells-commercialization/.

  10. Umebayashi T, Asai K, Kondo T, and Nakao A (2003) Electronic structures of lead iodide based low-dimensional crystals. Phys Rev B 67:155405

  11. Noh JH, Im SH, Heo JH, Mandal TN, Seok SI (2013) Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett 13:1764–1769

    Article  CAS  Google Scholar 

  12. Yin W-J, Shi T, and Yan Y (2014) Unusual defect physics in CH3NH3PbI3 perovskite solar cell absorber. Appl Phys Lett 104:063903

  13. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  CAS  Google Scholar 

  14. Wolff CM, Zu F, Paulke A, Toro LP, Koch N, Neher D (2017) Reduced interface-mediated recombination for high open-circuit voltages in CH3NH3PbI3 solar cells. Adv Mater 29:1700159

    Article  Google Scholar 

  15. Rao H-S, Chen B-X, Wang X-D, Kuang D-B, Su C-Y (2017) A micron-scale laminar MAPbBr 3 single crystal for an efficient and stable perovskite solar cell. Chem Commun 53:5163–5166

    Article  CAS  Google Scholar 

  16. van Eerden M, Jaysankar M, Hadipour A, Merckx T, Schermer JJ, Aernouts T, Poortmans J, Paetzold UW (2017) Optical analysis of planar multicrystalline perovskite solar cells. Adv Opt Mater 5:1700151

    Article  Google Scholar 

  17. Stoumpos CC, Malliakas CD, Kanatzidis MG (2013) Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg Chem 52:9019–9038

    Article  CAS  Google Scholar 

  18. De Wolf S, Holovsky J, Moon S-J, Löper P, Niesen B, Ledinsky M, Haug F-J, Yum J-H, Ballif C (2014) Organometallic halide perovskites: sharp optical absorption edge and its relation to photovoltaic performance. J Phys Chem Lett 5:1035–1039

    Article  Google Scholar 

  19. Löper P, Stuckelberger M, Niesen B, Werner J, Filipič M, Moon S-J, Yum J-H, Topič M, De Wolf S, Ballif C (2015) Complex refractive index spectra of CH3NH3PbI3 perovskite thin films determined by spectroscopic ellipsometry and spectrophotometry. J Phys Chem Lett 6:66–71

    Article  Google Scholar 

  20. Li Y, Yan W, Li Y, Wang S, Wang W, Bian Z, Xiao L, Gong Q (2015) Direct observation of long electron-hole diffusion distance in CH3NH3PbI3 perovskite thin film. Sci Rep 5:14485

    Article  CAS  Google Scholar 

  21. Jaysankar M, Qiu W, van Eerden M, Aernouts T, Gehlhaar R, Debucquoy M, Paetzold UW, Poortmans J (2017) Four-terminal perovskite/silicon multijunction solar modules. Adv Energy Mater 7:1602807

    Article  Google Scholar 

  22. Hajjiah A, Badran H, Kandas I, and Shehata N (2020) Perovskite solar cell with added gold/silver nanoparticles: enhanced optical and electrical characteristics. Energies 13

  23. Rayleigh L (1879) On reflection of vibrations at the confines of two media between which the transition is gradual. Proc Lond Math Soc s1–11:51–56

  24. Fraunhofer JV (1888) Versuche über die Ursachen des Anlaufens und Mattwerdens des Glases und die Mittel, denselben zuvorzukommen. J Von Fraunhofer’s Gesammelte Schriften Verl K Akad Munich

  25. Someda C (1998) Electromagnetic Waves

  26. Southwell WH (1983) Gradient-index antireflection coatings. Opt Lett 8:584–586

    Article  CAS  Google Scholar 

  27. Dobrowolski JA, Poitras D, Ma P, Vakil H, Acree M (2002) Toward perfect antireflection coatings: numerical investigation. Appl Opt 41:3075–3083

    Article  CAS  Google Scholar 

  28. Poitras D and Dobrowolski JA (2004) Toward perfect antireflection coatings 2 Theory, Appl Opt 43:1286–1295

  29. Hadobás K, Kirsch S, Carl A, Acet M, Wassermann EF (2000) Reflection properties of nanostructure-arrayed silicon surfaces. Nanotechnology 11:161–164

    Article  Google Scholar 

  30. Du D, Xu Z, Wang L, Guo Y, Liu S, Yu T, Wang C, Wang F, Wang H (2021) The broadband and omnidirectional antireflective performance of perovskite solar cells with curved nanostructures. Sol Energy 224:10–17

    Article  CAS  Google Scholar 

  31. Chen Y, Du C, Sun L, Fu T, Zhang R, Rong W, Cao S, Li X, Shen H, Shi D (2021) Improved optical properties of perovskite solar cells by introducing Ag nanoparticles and ITO AR layers. Sci Rep 11:14550

    Article  CAS  Google Scholar 

  32. Abedini-Ahangarkola H, Soleimani-Amiri S (2021) Design and analysis of high efficiency perovskite solar cells with light trapping nano-textured substrates. Int J Eng 34

  33. Gao M, Han X, Zhan X, Liu P, Shan Y, Chen Y, Li J, Zhang R, Wang S, Zhang Q, Zheng Y, Chen L (2019) Enhancement in photoelectric performance of flexible perovskite solar cells by thermal nanoimprint pillar-like nanostructures. Mater Lett 248:16–19

    Article  Google Scholar 

  34. Sanchez-Sobrado O, Mendes MJ, Haque S, Mateus T, Aguas H, Fortunato E, Martins R (2019) Lightwave trapping in thin film solar cells with improved photonic-structured front contacts. J Mater Chem C 7:6456–6464

    Article  CAS  Google Scholar 

  35. Abdelraouf OAM, Shaker A, Allam NK (2018) Novel design of plasmonic and dielectric antireflection coatings to enhance the efficiency of perovskite solar cells. Sol Energy 174:803–814

    Article  CAS  Google Scholar 

  36. Kim DH, Dudem B, Jung JW, and Yu JS (2018) Boosting light harvesting in perovskite solar cells by biomimetic inverted hemispherical architectured polymer layer with high haze factor as an antireflective layer, 36 (n.d.)

  37. Abdelraouf OAM, Allam NK (2016) Towards nanostructured perovskite solar cells with enhanced efficiency: coupled optical and electrical modeling. Sol Energy 137:364–370

    Article  CAS  Google Scholar 

  38. Tavakoli MM, Tsui K-H, Leung S-F, Zhang Q, He J, Yao Y, Li D, and Fan Z (2015) Highly efficient flexible perovskite solar cell with anti-reflection and self-cleaning nanostructures. ACS Nano 29 (n.d.).

  39. Paetzold UW, Qiu W, Finger F, Poortmans J, and Cheyns D (2015) Nanophotonic front electrodes for perovskite solar cells. Appl Phys Lett 106:173101

  40. Peter Amalathas A, Alkaisi MM (2019) Nanostructures for light trapping in thin film solar cells. Micromachines 10

  41. Movla H, Sohrabi F, Hosseinpour A, Babaei H (2010) Application of nanostructure materials in solar cells

  42. Pudasaini PR, Srivastava SK, Zhan Y, Ruiz-Zepeda F, Pandit B (2017) Nanostructured solar cells. Int J Photoenergy 2017:1289349

    Article  Google Scholar 

  43. Chao Y-C, Chen C-Y, Lin C-A, He J-H (2011) Light scattering by nanostructured anti-reflection coatings. Energy Environ Sci 4:3436–3441

    Article  CAS  Google Scholar 

  44. Qarony W, Hossain MI, Dewan R, Fischer S, Meyer-Rochow VB, Salleo A, Knipp D, Tsang YH (2018) Approaching perfect light incoupling in perovskite and silicon thin film solar cells by moth eye surface textures. Adv Theory Simul 1:1800030

    Article  Google Scholar 

  45. Dewan R, Fischer S, Benno Meyer-Rochow V, Özdemir Y, Hamraz S, Knipp D (2011) Studying nanostructured nipple arrays of moth eye facets helps to design better thin film solar cells. Bioinspir Biomim 7:016003

  46. Ke W, Zhao D, Xiao C, Wang C, Cimaroli AJ, Grice CR, Yang M, Li Z, Jiang C-S, Al-Jassim M, Zhu K, Kanatzidis MG, Fang G, Yan Y (2016) Cooperative tin oxide fullerene electron selective layers for high-performance planar perovskite solar cells. J Mater Chem A 4:14276–14283

    Article  CAS  Google Scholar 

  47. Bruggeman V (1935) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Ann Phys 416:636–66

  48. Maxwell-Garnett JC (1904) Colours in metal glasses and in metallic films. Phil Trans R Soc Lond A 203:385-420

  49. Garnett JM (1906) Colours in metal glasses, in Metallic films, and in metallic solutions. II, Philos. Trans R Soc Lond Ser Contain Pap Math Phys Character 205:237–288

  50. Jošt M, Albrecht S, Kegelmann L, Wolff CM, Lang F, Lipovšek B, Krč J, Korte L, Neher D, Rech B, Topič M (2017) Efficient light management by textured nanoimprinted layers for perovskite solar cells. ACS Photonics 4:1232–1239

    Article  Google Scholar 

  51. Lee Y-J, Ruby DS, Peters DW, McKenzie BB, Hsu JWP (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505

    Article  CAS  Google Scholar 

  52. O’Shea D, Suleski T, Kathman A, Prather D (2004) Diffractive optics: design, fabrication, and test (SPIE Press, 2003), Vol. TT62

  53. Zhang H, Toudert J (2018) Optical management for efficiency enhancement in hybrid organic-inorganic lead halide perovskite solar cells. Sci Technol Adv Mater 19:411–424

    Article  CAS  Google Scholar 

  54. Razzaq A, Depauw V, Cho J, Radhakrishnan HS, Gordon I, Szlufcik J, Abdulraheem Y, Poortmans J (2020) Periodic inverse nanopyramid gratings for light management in silicon heterojunction devices and comparison with random pyramid texturing. Sol Energy Mater Sol Cells 206:110263

  55. Carretero-Palacios S, Calvo ME, Míguez H (2015) Absorption enhancement in organic–inorganic halide perovskite films with embedded plasmonic gold nanoparticles. J Phys Chem C 119:18635–18640

    Article  CAS  Google Scholar 

  56. Hajjiah A, Kandas I, Shehata N (2018) Efficiency enhancement of perovskite solar cells with plasmonic nanoparticles: a simulation study. Materials 11

  57. Kothandaraman R (2018) Development of four-terminal devices utilising thin-film solar cells

  58. Guillemoles J-F, Kirchartz T, Cahen D, Rau U (2019) Guide for the perplexed to the Shockley-Queisser model for solar cells. Nat Photonics 13:501–505

    Article  CAS  Google Scholar 

Download references

Funding

This project was funded “fully” by Kuwait Foundation for the Advancement of Sciences (KFAS) under project code: PN18-14SP-01.

Author information

Authors and Affiliations

Authors

Contributions

H. B. performed the simulations under the full supervision of A. H. Other members: A. H., N. S., and I. K. contributed in the idea and methodology. A. H. and H. B. wrote the draft version of the paper. A. H., M. O., I. K., and N. S. reviewed and edited the paper. N. S. is the main funding investigator (PI), while I. K. and A. H. are co-PIs. All the authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Ali Hajjiah.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original online version of this article was revised: there should be 3 affiliations of the author Ishac Kandas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajjiah, A., Badran, H., Shehata, N. et al. The Effect of Different AR Nanostructures on the Optical Performance of Organic–Inorganic Halide Perovskite Semiconductor Solar Cell. Plasmonics 17, 581–595 (2022). https://doi.org/10.1007/s11468-021-01547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01547-x

Keywords

Navigation