Skip to main content
Log in

Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with 2-D Franckeite Nanosheets

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

The sensitivity of a standard surface plasmon resonance (SPR) biosensor in angular interrogation is low. A unique 2-dimensional substantial heterostructure, franckeite/graphene layer, has been deposited over the metal surface to improve the sensitivity; moreover, the sensitivity is limited to a certain extent. A SPR biosensor based on modified Kretschmann configuration has been investigated, contain bimetallic layers of silver (Ag) and nickel (Ni). A layer of franckeite is sandwich in the metal layer. The proposed configuration has a maximum sensitivity of 352°/RIU, which is 80.80% higher than the conventional sensor. The franckeite is an air-stable 2-D material and has application in the chemical, biological, and medical fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Neethirajan S, Ragavan V, Weng X, Chand R (2018) Biosensors for sustainable food engineering: challenges and perspectives. Biosensors 8(1):23

    Article  Google Scholar 

  2. Ligler FS, Rowe C, Kim LCS, Yura ES, Golden JP (2003) Array biosensor for detection of toxins. Anal Bioanal Chem 377:469–477

    Article  CAS  Google Scholar 

  3. Mustafa F, Andreescu S (2018) Chemical and biological sensors for food-quality monitoring and smart packaging. Foods 7(10):168

    Article  CAS  Google Scholar 

  4. Island JO, Steele GA, Van Der Zant HSJ, Castellanos-Gomez A (2015) Environmental instability of few-layer black phosphorus. 2D Mater., 2(1):11002

  5. Choi Y, Lee G, Ko H, Wook Y, Kang M, Pyun J (2014) Biosensors and bioelectronics development of SPR biosensor for the detection of human hepatitis B virus using plasma-treated parylene-N fi lm. Biosens Bioelectron 56(15):286–294

    Article  CAS  Google Scholar 

  6. Xiang Y, Zhu J, Wu L, You Q, Ruan B, Dai X (2018) Highly sensitive terahertz gas sensor based on surface plasmon resonance with graphene. IEEE Photonics J 10(1):1–7

    Article  Google Scholar 

  7. Singh Y, Raghuwanshi SK (2019) Electromagnetic wave sensors sensitivity enhancement of the surface plasmon resonance gas sensor with black phosphorus. IEEE Sensors Lett 3(12):1–4

    Article  CAS  Google Scholar 

  8. Sharma AK (2018) Blue phosphorene/MoS 2 heterostructure based SPR sensor with enhanced sensitivity. IEEE Photonics Technol Lett 30(7):595–598

    Article  CAS  Google Scholar 

  9. Pal A et al (2020) Prism based surface plasmon resonance biosensor for biomedical applications, in ICOL-2019. Springer Proceedings in Physics 258, Springer Singapore. pp. 1–4

  10. Pal A, Jha A (2021) “A theoretical analysis on sensitivity improvement of an SPR refractive index sensor with graphene and barium titanate nanosheets,” Optik (Elsevier). 231:166378

  11. Homola J (2003) Present and future of surface plasmon resonance biosensors. Anal Bioanal Chem 377(3):528–539

    Article  CAS  Google Scholar 

  12. Sharma AK, Gupta BD (2006) Theoretical model of a fiber optic remote sensor based on surface plasmon resonance for temperature detection. Opt Fiber Technol 12(1):87–100

    Article  Google Scholar 

  13. Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light, Zeitschrift fur Naturforsch. - Sect. A J Phys Sci. 23(12):2135–2136

  14. Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Zeitschrift für Phys 216(4):398–410

    Article  CAS  Google Scholar 

  15. Nisha A, Maheswari P, Anbarasan PM, Rajesh KB, Jaroszewicz Z (2019) Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni), Opt. Quantum Electron. vol. 51

  16. Dai X, Liang Y, Zhao Y, Gan S, Jia Y, Xiang Y (2019) Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe) allotropes. Sensors 19(1):173

    Article  Google Scholar 

  17. Zhao X et al (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors 18(7):2056

    Article  Google Scholar 

  18. Cappi G, Accastelli E, Cantale V, Rampi MA, Benini L, Guiducci C (2013) Peak shift measurement of localized surface plasmon resonance by a portable electronic system. Sensors Actuators, B Chem 176:225–231

    Article  CAS  Google Scholar 

  19. Lam WW, Chu LH, Wong CL, Zhang YT (2005) A surface plasmon resonance system for the measurement of glucose in aqueous solution. Sensors Actuators, B Chem 105(2):138–143

    Article  CAS  Google Scholar 

  20. Lan G, Liu S, Ma Y, Zhang X, Wang Y, Song Y (2015) Sensitivity and figure-of-merit enhancements of liquid-prism SPR sensor in the angular interrogation. Opt Commun 352:49–54

    Article  CAS  Google Scholar 

  21. Srivastava A, Prajapati YK (2019) Performance analysis of silicon and blue phosphorene/MoS 2 hetero-structure based SPR sensor. PHOTONIC SENSORS 9(3):284–292

    Article  CAS  Google Scholar 

  22. Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395

    Article  CAS  Google Scholar 

  23. Pang K, Dong W, Zhang B, Zhan S, Wang X (2016) A performance-enhanced bimetallic chip for the detection of cadmium ions with surface plasmon resonance. Plasmonics 11(4):1119–1128

    Article  CAS  Google Scholar 

  24. Dyankov G, Zekriti M, Saidi EH, Bousmina M (2012) Long-range surface plasmon supported by asymmetric bimetallic structure. Plasmonics 7(3):479–485

    Article  CAS  Google Scholar 

  25. Dyankov G, Zekriti M, Bousmina M (2012) Dual-mode surface-plasmon sensor based on bimetallic film. Appl Opt 51(13):2451–2456

    Article  CAS  Google Scholar 

  26. Jha R, Sharma AK (2009) Chalcogenide glass prism based SPR sensor with Ag-Au bimetallic nanoparticle alloy in infrared wavelength region. J Opt A Pure Appl Opt. 11:045502

  27. Ong BH, Yuan X, Tjin SC, Zhang J, Ng HM (2006) Optimised film thickness for maximum evanescent field enhancement of a bimetallic film surface plasmon resonance biosensor. Sensors Actuators, B Chem 114(2):1028–1034

    Article  CAS  Google Scholar 

  28. Jia Y, Li Z, Wang H, Saeed M (2020) Sensitivity enhancement of a surface plasmon resonance sensor with platinum diselenide. Sensors 20(1):131

    Article  CAS  Google Scholar 

  29. Ouyang Q, Zeng S, Jiang L, Hong L, Xu G (2016) Sensitivity enhancement of transition metal dichalcogenides / silicon nanostructure-based surface plasmon resonance biosensor. Sci Rep 6:28190

    Article  CAS  Google Scholar 

  30. Lin Z et al (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS 2-Au films tuning and sensitivity enhancement of surface plasmon resonance. IEEE Photonics J 8(6):1–8

    Article  Google Scholar 

  31. Wu L et al (2017) Sensitivity enhancement by using few-layer black phosphorus-graphene/TMDCs heterostructure in surface plasmon resonance biochemical sensor. Sensors Actuators, B Chem 249:542–548

    Article  CAS  Google Scholar 

  32. Rathi S et al (2015) Tunable electrical and optical characteristics in monolayer graphene and few-layer MoS2 heterostructure devices. Nano Lett 15(8):5017–5024

    Article  CAS  Google Scholar 

  33. Aksimsek S, Jussila H, Sun Z (2018) Graphene – MoS 2 – metal hybrid structures for plasmonic biosensors. Opt Commun 428:233–236

    Article  CAS  Google Scholar 

  34. Mudgal N et al (2020) BaTiO3-Graphene-Affinity layer–based surface plasmon resonance (SPR) biosensor for Pseudomonas bacterial detection. Plasmonics 15:1221–1229

  35. Geim AK, Grigorieva IV (2013) Van der Waals heterostructures. Nature 499(7459):419–425

    Article  CAS  Google Scholar 

  36. Qin J, Deng L, Xie J, Tang T, Bi L (2015) Highly sensitive sensors based on magneto-optical surface plasmon resonance in Ag/CeYIG heterostructures, AIP Adv. 5(1):1–8

  37. Williams TB, Hyde BG (1988) Electron microscopy of cylindrite and franckeite. Phys Chem Miner 15(6):521–544

    Article  CAS  Google Scholar 

  38. Prando G (2017) Van der Waals heterostructures: the natural way. Nat Nanotechnol 12(3):191

    Article  CAS  Google Scholar 

  39. Gant P et al (2017) Optical contrast and refractive index of natural van der Waals heterostructure nanosheets of franckeite. Beilstein J Nanotechnol 8(1):2357–2362

    Article  CAS  Google Scholar 

  40. Molina-Mendoza AJ et al (2017) Franckeite as a naturally occurring van der Waals heterostructure. Nat Commun. vol. 8:14409

  41. Velický M et al (2017) Exfoliation of natural van der Waals heterostructures to a single unit cell thickness. Nat Commun 8:1–11

    Article  Google Scholar 

  42. Ray K et al (2017) Photoresponse of Natural van der Waals Heterostructures. ACS Nano 11(6):6024–6030

    Article  CAS  Google Scholar 

  43. Gan S, Zhao Y, Dai X, Xiang Y (2019) “Sensitivity enhancement of surface plasmon resonance sensors with 2D franckeite nanosheets. Results Phys. vol. 13:102320

  44. Brahmachari K, Ray M (2013) Effect of prism material on design of surface plasmon resonance sensor by admittance loci method. Front Optoelectron 6(2):185–193

    Article  Google Scholar 

  45. Zhan T, Shi X, Dai Y, Liu X, Zi J (2013) Transfer matrix method for optics in graphene layers. J Phys Condens Matter. vol. 25 215301

  46. Murata H, Saitoh N, Yoshizawa N, Suemasu T, Toko K (2017) High-quality multilayer graphene on an insulator formed by diffusion controlled Ni-induced layer exchange. Appl Phys Lett 111(24):3–7

    Article  Google Scholar 

  47. Maharana PK, Jha R (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors Actuators, B Chem 169:161–166

    Article  CAS  Google Scholar 

  48. Davydov SY, Lebedev AA (2014) Evaluation of the effect of adsorption on the conductivity of single-layer graphene formed on a semiconductor substrate. Phys Solid State 56(12):2580–2583

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, Sandeep Sharma, would like to thank Prof CM Tan, Director, Centre for Reliability Sciences and Technologies, Chang Gung University, Taiwan, for suggesting language and manuscript presentation changes.

Author information

Authors and Affiliations

Authors

Contributions

SS formulated the problem statement wherein giving the theoretical background for SPR biosensor. He also helped in drafting the manuscript. YS provided the theoretical background to biosensing and importance of Optical Biosensing. He also helped in reviewing the manuscript. AP provided statistical analysis for the results. He provided the theoretical background to SPR biosensors. He also helped in reviewing and formatting the manuscript. BK worked towards the revision of the complete manuscript, formatting and finalizing the comments of the reviewers.

Corresponding author

Correspondence to Amrindra Pal.

Ethics declarations

Ethics Approval

Not applicable. The work presented in this manuscript is mathematical modeling only for the proposed biosensor. No experiment was performed on the human body and/or living organism/animal. So, an ethical approval from an ethical committee is not required.

Consent to Participate

All the authors are willing to participate in the work presented in this manuscript. On the behalf of all authors, communicating author is authorized to give their consent.

Consent for Publication

All the authors have given their consent to publish this work.

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karki, B., Sharma, S., Singh, Y. et al. Sensitivity Enhancement of Surface Plasmon Resonance Biosensor with 2-D Franckeite Nanosheets. Plasmonics 17, 71–78 (2022). https://doi.org/10.1007/s11468-021-01495-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01495-6

Keywords

Navigation