Skip to main content
Log in

Radioplasmonics: Design of Metamaterial Milli-particles in Air and Absorbing Media for Antenna Communication and Human-Body In Vivo Applications

  • Published:
Plasmonics Aims and scope Submit manuscript

Abstract

Surface plasmons with MHz-GHz energies are predicted by using milliparticles made of metamaterials that behave like metals in the radiofrequency range. In this work, the so-called radioplasmonics is exploited to design scatterers embedded in different realistic media with tunable absorption or scattering properties. High-quality scattering/absorption based on plasmon excitation is demonstrated through a few simple examples, useful to build antennas with better performance than conventional ones. Systems embedded in absorbing media as saline solutions or biological tissues are also considered to improve biomedical applications and contribute with real-time, in vivo monitoring tools in body tissues. In this regard, any possible implementation is criticized by calculating the radiofrequency heating with full thermal simulations. As proof of the versatility offered by radioplasmonic systems, plasmon “hybridization” is used to enhance near-fields to unprecedented values or to tune resonances as in optical spectra, minimizing the heating effects. Finally, a monitorable drug-delivery in human tissue is illustrated with a hypothetical example. This study has remarkable consequences on the conception of plasmonics at macroscales. The recently developed concept of “spoof” plasmons achieved by complicated structures is simplified in radioplasmonics since bulk materials with elemental geometries are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Availability of Data and Material

Data sharing not available due to software license restrictions.

Abbreviations

EM:

Electromagnetic

MM/s:

Metamaterial/s

RF:

Radiofrequency

RFID:

Radiofrequency Identification

NFC:

Near-field Communication

SPs:

Spoof plasmons

RP:

Radioplasmonic

GHz:

Gigahertz

MHz:

Megahertz

CW:

Continuous wave

PDMS:

Polydimethylsiloxane

APu/Al:

Acrylic/polyurethane/aluminum

MWCNT:

Multi-walled carbon nanotubes

CNF:

Carbon nanofiber

NiO:

Nickel oxide

TiN:

Titanium nitride

PPy:

Polypyrrole

CNTs:

Carbon nanotubes

SI:

Supplementary Information

SRPs:

Surface radioplasmons

DI:

Distilled

BS:

Composition of Bi203 and Si02

References

  1. Garoli D, Calandrini E, Giovannini G, Hubarevich A, Caligiuri V, Angelis FD (2019) Nanoporous gold metamaterials for high sensitivity plasmonic sensing Nanoscale Horiz 4:1153–1157

    CAS  Google Scholar 

  2. Novotny L, Hecht B (2006) Principles of Nano-Optics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  3. Li M, Cushing SK, Wu N (2015) Plasmon-enhanced optical sensors: A review Analyst 140:386–406

    CAS  PubMed  Google Scholar 

  4. Baffou G (2017) Thermoplasmonics: heating metal nanoparticles Using Light. Cambridge University Press, Cambridge

    Book  Google Scholar 

  5. Zhang X, Zheng Y, Liu X, Lu W, Dai J, Lei DY, MacFarlane DR (2015) Hierarchical porous plasmonic metamaterials for reproducible ultrasensitive surface-enhanced raman spectroscopy. Adv Mater 27:1090–1096

    Article  CAS  PubMed  Google Scholar 

  6. Nam JM, Oh JW, Lee H and Suh YD (2016) Plasmonic Nanogap-Enhanced Raman Scattering with Nanoparticles. Acc Chem Res 49(12):2746-2755

  7. Messina GC, Malerba M, Zilio P, Miele E, Dipalo M, Ferrara L, De Angelis F (2015) Hollow plasmonic antennas for broadband SERS spectroscopy Beilstein J Nanotechnol 6:492–498

    Article  CAS  PubMed  Google Scholar 

  8. Giannini V, Fernández-Domínguez AI, Heck SC, Maier SA (2011) Plasmonic nanoantennas: fundamentals and their use in controlling the radiative properties of nanoemitters Chem. Rev 111:3888–3912

    CAS  Google Scholar 

  9. Rodríguez-Oliveros R, Sánchez-Gil JA, Giannini V, Macías D, Rivas JG Plasmon optical nanoantennas: characterization, design, and applications in nanophotonics

  10. Nazari M, Xi M, Lerch S, Alizadeh MH, Ettinger C, Akiyama H, Gillespie C, Gummuluru S, Erramilli S, Reinhard BM (2017) Plasmonic enhancement of selective photonic virus inactivation Scientific Reports 7:11951

    PubMed  Google Scholar 

  11. Goerlitzer ESA, Speichermann LE, Mirza TA, Mohammadi R, Vogel N (2020) Addressing the plasmonic hotspot region by site-specific functionalization of nanostructures. Nanoscale Adv 2:394–400

  12. Urbas AM, Jacob Z, Negro LD, Engheta N, Boardman AD, Egan P, Khanikaev AB, Menon V, Ferrera M, Kinsey N, DeVault C, Kim J, Shalaev V, Boltasseva A, Valentine J, Pfeiffer C, Grbic A, Narimanov E, Zhu L, Fan S, Alù A, Poutrina E, Litchinitser NM, Noginov MA, MacDonald KF, Plum E, Liu X, Nealey PF, Kagan CR, Murray CB, Pawlak DA, Smolyaninov II, Smolyaninova VN, Chanda D (2016) Roadmap on optical metamaterials J. Opt. 18:093005

  13. Chen D, Zheng X (2018) Multi-material additive manufacturing of metamaterials with giant. Tailorable Negative Poisson’s Ratios Scientific Reports 8:9139

    Article  PubMed  CAS  Google Scholar 

  14. Pendry JB, Martín-Moreno L, Garcia-Vidal FJ (2004) Mimicking surface plasmons with structured surfaces Science 305:847–848

    CAS  PubMed  Google Scholar 

  15. Pendry JB, Schurig D, Smith DR (2006) Controlling electromagnetic fields Science 312:1780–1782

    CAS  PubMed  Google Scholar 

  16. Klotz G, Malléjac N, Guenneau S, Enoch S (2019) Controlling frequency dispersion in electromagnetic invisibility cloaks Scientific Reports 9:6022

    PubMed  Google Scholar 

  17. Bonache J, Zamora G, Paredes F, Zuffanelli S, Aguilà P, Martín F (2016) Controlling the electromagnetic field confinement with metamaterials Scientific Reports 6:37739

    CAS  PubMed  Google Scholar 

  18. Stutzman WL, Thiele GA (2012) Antenna theory and design (John Wiley & Sons)

  19. Agio M, Alù A (2013) Optical Antennas. Cambridge University Press, Cambridge

    Google Scholar 

  20. Lazaro A, Villarino R, Girbau D (2018) A survey of NFC sensors based on energy harvesting for IoT applications Sensors 18:3746

    Google Scholar 

  21. Qin F, Zhang Q, Xiao JJ (2016) Sub-wavelength unidirectional antenna realized by stacked spoof localized surface plasmon resonators Scientific Reports 6:29773

    CAS  PubMed  Google Scholar 

  22. Zhang Y, Han Z (2015) Spoof surface plasmon based planar antennas for the realization of Terahertz hotspots Scientific Reports 5:18606

    CAS  PubMed  Google Scholar 

  23. Tang WX, Zhang HC, Ma HF, Jiang WX and Cui TJ (2019) Concept, theory, design, and applications of spoof surface plasmon polaritons at microwave frequencies. Adv Opt Mat 7:1800421

  24. Liao Z, Luo GQ, Wu XY, Cai BG, Cao Pan B, Pan YJ (2020) A horizontally polarized omnidirectional antenna based on spoof surface plasmons Front. Phys. 8:53

  25. Garcia-Vidal FJ, Martín-Moreno L, Pendry JB (2005) Surfaces with holes in them: new plasmonic metamaterials. J Opt A: Pure Appl Opt 7:S97-101

    Article  Google Scholar 

  26. Shao RL, Li B, Yang L, Zhou YJ (2019) Electrically small multiband antenna based on spoof localized surface plasmons ed J Zhao, W Tang and S Hongyu EPJ Appl. Metamat. 6:11

  27. Dai LH, Tan C, Zhou YJ (2020) Ultrawideband low-profile and miniaturized spoof plasmonic Vivaldi antenna for base station. Appl Sci 10:2429

    Article  CAS  Google Scholar 

  28. Maksymov IS, Staude I, Miroshnichenko AE, Kivshar YS (2012) Optical Yagi-Uda nanoantennas Nanophotonics 1:65–81

    Article  Google Scholar 

  29. Rocca RL, Messina GC, Dipalo M, Shalabaeva V, Angelis FD (2015) Out-of-plane plasmonic antennas for Raman analysis in living cells. Small 11:4632–4637

    Article  PubMed  CAS  Google Scholar 

  30. Huang X, El-Sayed MA (2011) Plasmonic photo-thermal therapy (PPTT) Alexandria J Med 47:1–9

  31. Lim WQ, Gao Z (2016) Plasmonic nanoparticles in biomedicine Nano Today 11:168–188

    CAS  Google Scholar 

  32. Boehm T, Malich A, Goldberg SN, Reichenbach JR, Hilger I, Hauff P, Reinhardt M, Fleck M, Kaiser WA (2002) Radio-frequency tumor ablation: internally cooled electrode versus saline-enhanced technique in an aggressive rabbit tumor model. Radiology 222:805–813

    Article  PubMed  Google Scholar 

  33. Gabriel C, Gabriel S, Corthout E (1996) The dielectric properties of biological tissues: I. Literature survey Phys Med Biol 41:2231–2249

    Article  CAS  PubMed  Google Scholar 

  34. Abraham-Ekeroth RM, De Angelis F (2021) Radioplasmonics: plasmonic transducers in the radiofrequency regime for resonant thermo-acoustic imaging in deep tissues. ACS Photonics (accepted manuscript)

  35. Anon (2019) IEEE Standard for Safety Levels with respect to human exposure to electric, magnetic, and electromagnetic fields, 0 Hz to 300 GHz IEEE Std C95.1–2019 (Revision of IEEE Std C95.1–2005/ Incorporates IEEE Std C95.1–2019/Cor 1–2019) 1–312

  36. Tamarov K, Gongalsky M, Osminkina L, Huang Y, Omar M, Yakunin V, Ntziachristos V, Razansky D, Timoshenko V (2017) Electrolytic conductivity-related radiofrequency heating of aqueous suspensions of nanoparticles for biomedicine Phys. Chem Chem Phys 19:11510–11517

    Article  CAS  Google Scholar 

  37. Nicoletti G, Cornaglia AI, Faga A, Scevola S (2014) The biological effects of quadripolar radiofrequency sequential application: a human experimental study. Photomed Laser Surg 32:561–573

    Article  PubMed  PubMed Central  Google Scholar 

  38. Wang Y, Wig TD, Tang J, Hallberg LM (2003) Sterilization of foodstuffs using radio frequency heating. J Food Sci 68:539–544

    Article  CAS  Google Scholar 

  39. Geveke DJ, Brunkhorst C, Fan X (2007) Radio frequency electric fields processing of orange juice. Innov Food Sci Emerg Technol 8:549–554

    Article  Google Scholar 

  40. Hou Q, Yan K, Fan R, Zhang Z, Chen M, Sun K, Cheng C (2015) Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites RSC Adv. 5:9472–5

  41. Shi Z, Mao F, Wang J, Fan R, Wang X (2015) Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity RSC Adv 5:107307–107312

    CAS  Google Scholar 

  42. Tallman TN (2020) The effect of thermal loading on negative permittivity in carbon nanofiber/silicone metacomposites. Mater Today Commun 22:100843

  43. Cheng C, Fan R, Ren Y, Ding T, Qian L, Guo J, Li X, An L, Lei Y, Yin Y, Guo Z (2017) Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites Nanoscale 9:5779–5787

    CAS  PubMed  Google Scholar 

  44. Qu Y, Du Y, Fan G, Xin J, Liu Y, Xie P, You S, Zhang Z, Sun K, Fan R (2019) Low-temperature sintering Graphene/CaCu3Ti4O12 nanocomposites with tunable negative permittivity. J Alloys Comp 771:699–710

  45. Estevez D, Qin F, Luo Y, Quan L, Mai Y-W, Panina L, Peng H-X (2019) Tunable negative permittivity in nano-carbon coated magnetic microwire polymer metacomposites. Compos Sci Technol 171:206–217

    Article  CAS  Google Scholar 

  46. Sun K, Dong J, Wang Z, Wang Z, Fan G, Hou Q, An L, Dong M, Fan R, Guo Z (2019) Tunable Negative Permittivity in Flexible Graphene/PDMS Metacomposites. J Phys Chem C 123:23635–23642

    Article  CAS  Google Scholar 

  47. Wang Z, Sun K, Xie P, Liu Y, Gu Q, Fan R (2020) Permittivity transition from positive to negative in acrylic polyurethane-aluminum composites Composites Science and Technology 188:107969

  48. Fujii M (2016) A new mode of radio wave diffraction via the terrestrial surface plasmon on mountain range. Radio Sci 51:1396–1412

    Article  Google Scholar 

  49. Fujii M (2013) Theory of ground surface plasma wave associated with pre-earthquake electrical charges. Radio Sci 48:122–130

    Article  Google Scholar 

  50. Jacak WA (2016) Plasmons in finite spherical electrolyte systems: RPA effective jellium model for ionic plasma excitations. Plasmonics 11:637–651

    Article  CAS  PubMed  Google Scholar 

  51. Jacak J, Jacak W (2019) Plasmons and plasmon–polaritons in finite ionic systems: toward soft-plasmonics of confined electrolyte structures. Appl Sci 9:1159

  52. David C (2018) Plasmonic properties of electrolytes beyond classical nanophotonics—a two-fluid, hydrodynamic approach to nonlocal soft plasmonics. In 2018 Progress in Electromag Res Symp (PIERS-Toyama) pp 490–5

  53. Prodan E, Nordlander P (2004) Plasmon hybridization in spherical nanoparticles. J Chem Phys 120:5444–5454

    Article  CAS  PubMed  Google Scholar 

  54. Koya A N, Ji B, Hao Z, Lin J (2016) Controlling optical field enhancement of a nanoring dimer for plasmon-based applications J. Opt. 18:055007

  55. Cai X, Zhao S, Hu M, Xiao J, Zhang N and Yang J (2017) Water based fluidic radio frequency metamaterials J Appl Phys 122:184101

  56. Ma Y, Luo Z, Steiger C, Traverso G, Adib F (2018) Enabling deep-tissue networking for miniature medical devices Proceedings of the Conference of the ACM Special Interest Group on Data Communication SIGCOMM ’18 (New York, NY, USA: Ass Comput Mach) pp 417–31

  57. Xu C, Qu Y, Fan G, Ren H, Chen J, Liu Y, Wu Y, Fan R (2018) Low loading carbon nanotubes supported polypyrrole nano metacomposites with tailorable negative permittivity in radio frequency range. Org Electron 63:362–368

    Article  CAS  Google Scholar 

  58. Haldar T, Kumar U, Yadav BC, Kumar VVRK (2020) Tunable negative permittivity of Bi2O3–SiO2/MWCNT glass-nanocomposites at radio frequency region J Mater Sci: Mater Electron 31:11791–800

  59. Albaladejo S, Gómez-Medina R, Froufe-Pérez LS, Marinchio H, Carminati R, Torrado JF, Armelles G, García-Martín A, Sáenz JJ (2010) Radiative corrections to the polarizability tensor of an electrically small anisotropic dielectric particle Opt. Express, OE 18:3556–3567

    Article  CAS  Google Scholar 

  60. Maier SA (2007) Plasmonics: Fundamentals and Applications (New York)

  61. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley-VCH, Weinheim

    Book  Google Scholar 

  62. Fu Q, Sun W (2001) Mie theory for light scattering by a spherical particle in an absorbing medium Appl. Opt., AO 40 1354–61

  63. Sudiarta IW, Chylek P (2001) Mie-scattering formalism for spherical particles embedded in an absorbing medium J. Opt. Soc. Am A, JOSAA 18:1275–1278

    Article  CAS  Google Scholar 

  64. Suzuki H, Lee I-YS (2008) Calculation of the Mie scattering field inside and outside a coated spherical particle. International Journal of Physical Sciences 3:038–041

    Google Scholar 

  65. Andreuccetti D, Fossi R, Petrucci C (1997) An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz, IFAC-CNR, Florence (Italy), 1997. Based on data published by C.Gabriel et al. in 1996. [Online]. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz

  66. Hasgall PA, F Di Gennaro, Baumgartner C, Neufeld E, Lloyd B, Gosselin MC, Payne D, Klingenböck A, Kuster N (2018) IT’IS Database for thermal and electromagnetic parameters of biological tissues - Version 4.0 itis.swiss/database

  67. Cheng EM, Fareq M, Abdullah FS, Wee FH, Khor SF, Lee YS, Afendi M, Shukry M, Shahriman AB, Khairunizanm W, Liyana Z (2013) Dielectric spectroscopy of pharmaceutical drug (Paracetamol) dosage in water 2013 IEEE International RF and Microwave Conference (RFM) 2013 IEEE International RF and Microwave Conference (RFM) pp 409–13

  68. Qu Y, Li Y, Xu C, Fan G, Xie P, Wang Z, Liu Y, Wu Y, Fan R (2018) Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range J Mater Sci: Mater Electron 29 5853–61

  69. Novotny L (2007) Effective wavelength scaling for optical antennas Phys. Rev. Lett. 98: 266802

  70. Zhang J, Liao Z, Luo Y, Shen X, Maier SA, Cui TJ (2017) Spoof plasmon hybridization Laser & Photonics Reviews 11:1600191

    Article  CAS  Google Scholar 

  71. Jackson JD (1999) Classical electrodynamics. Wiley, New York

    Google Scholar 

  72. Stogryn A (1971) Equations for calculating the dielectric constant of saline water (Correspondence) IEEE Transactions on Microwave Theory and Techniques 19:733–6

  73. Klein L, Swift C (1977) An improved model for the dielectric constant of sea water at microwave frequencies. IEEE Trans Antennas Propag 25:104–111

    Article  Google Scholar 

  74. Somaraju R, Trumpf J (2006) Frequency, temperature and salinity variation of the permittivity of seawater IEEE Transactions on Antennas and Propagation 54:3441–8

  75. Sobotka L, Allison S, Stanga Z (2008) Basics in clinical nutrition: water and electrolytes in health and disease e-SPEN, the European J Clin Nutri Meta 6(3):e259–66

  76. Tamarov KP, Osminkina LA, Zinovyev SV, Maximova KA, Kargina JV, Gongalsky MB, Ryabchikov Y, Al-Kattan A, Sviridov AP, Sentis M, Ivanov AV, Nikiforov VN, Kabashin AV, Timoshenko VY (2014) Radio frequency radiation-induced hyperthermia using Si nanoparticle-based sensitizers for mild cancer therapy Scientific Reports 4:7034

    CAS  PubMed  Google Scholar 

  77. Liu X, Chen H, Chen X, Alfadhl Y, Yu J, Wen D (2015) Radiofrequency heating of nanomaterials for cancer treatment: Progress, controversies, and future development Applied Phy Rev 2(1):011103

  78. Naftalovich R, Naftalovich D, Greenway F (2016) Polytetrafluoroethylene ingestion as a way to increase food volume and hence satiety without increasing calorie content J. Diabetes Sci. Technol 10(4):971-976

  79. Koya AN, Ji B, Hao Z, Lin J (2015) Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem J Appl Phys 118(11):113101

  80. Maehara T, Toyota H, Kuramoto M, Iwamae A, Tadokoro A, Mukasa S, Yamashita H, Kawashima A, Nomura S (2006) Radio Frequency Plasma in Water Jpn. J Appl Phys 45:8864

    Article  CAS  Google Scholar 

  81. Geveke DJ (2005) Non-thermal processing by radio frequency electric fields Emerging Technologies for Food Processing ed D-W Sun (London: Academic Press) pp 307–322

  82. Juan CG, Bronchalo E, Potelon B, Quendo C, Sabater-Navarro JM (2019) Glucose concentration measurement in human blood plasma solutions with microwave sensors Sensors (Basel) 19(17):3779

  83. Abid A, O’Brien JM, Bensel T, Cleveland C, Booth L, Smith BR, Langer R, Traverso G (2017) Wireless power transfer to millimeter-sized gastrointestinal electronics validated in a swine model Scientific Reports 7:46745

    Google Scholar 

  84. Abramson A, Caffarel-Salvador E, Khang M, Dellal D, Silverstein D, Gao Y, Frederiksen M R, Vegge A, Hubálek F, Water J J, Friderichsen A V, Fels J, Kirk R K, Cleveland C, Collins J, Tamang S, Hayward A, Landh T, Buckley S T, Roxhed N, Rahbek U, Langer R and Traverso G (2019) An ingestible self-orienting system for oral delivery of macromolecules. Science 363:611–615

    Article  PubMed  CAS  Google Scholar 

  85. Kong YL, Zou X, McCandler CA, Kirtane AR, Ning S, Zhou J, Abid A, Jafari M, Rogner J, Minahan D, Collins JE, McDonnell S, Cleveland C, Bensel T, Tamang S, Arrick G, Gimbel A, Hua T, Ghosh U, Soares V, Wang N, Wahane A, Hayward A, Zhang S, Smith BR, Langer R, Traverso G (2019) 3D-printed gastric resident electronics Adv Mater Technol 4:(3)1800490

Download references

Acknowledgements

RMAE would like to thank Dr. Cristian D’Angelo from IFAS-UNCPBA and Dr. Francesco De Angelis from IIT for stimulating discussions on the topic. The author also thank Plasmon Nanotechnologies group for their hospitality in IIT and the permission to use their licensed software.

Funding

This research was supported by Facultad de Ciencias Exactas, Universidad Nacional del Centro de la Provincia de Buenos Aires from Argentina and Istituto Italiano di Tecnologia from Italy.

Author information

Authors and Affiliations

Authors

Contributions

R.M.A.E. conceived the idea, made of the calculations, analyzed the results, and wrote the manuscript.

Corresponding author

Correspondence to Ricardo Martín Abraham-Ekeroth.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 8891 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abraham-Ekeroth, R.M. Radioplasmonics: Design of Metamaterial Milli-particles in Air and Absorbing Media for Antenna Communication and Human-Body In Vivo Applications. Plasmonics 16, 2179–2191 (2021). https://doi.org/10.1007/s11468-021-01471-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11468-021-01471-0

Keywords

Navigation